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ABSTRACT

Child stunting, defined as impaired height for age, is a major indicator of severe undernutrition
and is more prevalent in Sub-Saharan Africa. Individual child stunting risk factors for childhood
stunting are well-studied and known. This study aimed at assessing the viability of combining
individual child stunting risk factors into a simple risk factor prediction model that could be used
to predict stunting among children aged 5 years or lower. Firstly, a systematic review of risk
factors for childhood stunting was conducted. Secondly, using stunting data on nearly 5,000
children aged 5 years or below in the Malawi Demographic Health Survey (MDHS 2015-16) we
identified risk factors that were used in the primary multivariate logistics model for child
stunting.  Thirdly, several reduced models were then obtained depending on the variable
selection algorithm that included backward, forward, stepwise, random forest, Least Absolute
Shrinkage and Selection Operator (LASSO), and own subjective judgment. Finally, from each
reduced multivariable logistic model, a stunting risk score, based on its coefficients, was
calculated for each child. The stunting risk prediction models were assessed using
discrimination measures including area under-receiver operator curve (AUROC), sensitivity and
specificity. The systematic review produced 68 predictor variables of child stunting, of which 67
were available from the 2016 MDHS dataset, and 27 had complete information. The common
risk factors selected by all the variable selection methods include household wealth index, age of
the child, household size, type of birth (singleton/multiple births), and birth weight. The best
cut-off point on the child stunting risk prediction model was 0.37. The best predictive model was
based on risk factors determined by the judgment method, which had AUROC 64% (95% CI:
60%-67%) in the test data. For children residing in urban areas, the AUROC was 67% (95% CI:
58-76%) as opposed to those in rural areas, AUROC =63% (95% CI: 59-67%). The derived
child stunting risk prediction model could be useful as a first screening tool to identify children
more likely to be at risk of stunting. The identified children could then receive necessary

nutritional interventions.
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CHAPTER1

INTRODUCTION

1.1. Introduction

child malnutrition persists to pose a significant public health challenge in the sub-Saharan
African region. About 3.1 million children are projected to lose their lives each year, either
directly or indirectly, due to malnutrition. Moreover, around 165 million children experience the
long-term effects of stunted growth, limiting their full growth potential ( Shinsugi , et al., 2015).
According to the 2016 national data on childhood undernutrition in Malawi, it was found that
37% of young children experienced stunting, 3% were affected by wasting, and 12% were
underweight (National Statistical Office, 2017). In 2019, the prevalence levels of stunting,
underweight, and wasting in Malawi were documented as 39%, 12%, and 2%, respectively
(Mtenda, 2019). The prevalence of stunting, greater than 20% in under five children is regarded
as a public health concern by the World Health Organization (WHO) ( Uwiringiyimana ,
Veldkamp, & Ocke, 2019). Stunting (child’s height-for-age z-score) serves as a marker of
inhibited linear growth and the aggregate deficit in growth faced by children (Akombi, Agho, Astell-
Burt, Hall, & Renzaho, 2017). Stunting affects child health adversely by causing continued
consequences, such as damaged cognitive abilities and educational performance during
childhood, which could have harmful implications for adult health and economic productivity (
Aguayo V. M., Nair, Badgaiyan, & Krishna, 2016).

The framework established by the World Health Organization (WHQO) outlines comprehensively
the factors that influence stunting. These factors are classified into four primary closely related
factors in the WHO framework: household and family-related factors, insufficient practices
regarding complementary feeding, inadequate practices concerning breastfeeding, and infections
(Stewart, lannotti, Dewey, Michaelsen, & Onyango, 2013). Numerous research studies have studied

several factors influencing stunting as discussed in the subsequent section.



1.2. Factors Associated with Stunting.

1.2.1. Predictor Search Strategy

The study conducted a search of PubMed and Google Scholar databases for relevant articles
between August and December 2021. Several searches were performed with the search terms
“Determinants of stunting AND Africa” or “Risk factors of stunting AND Africa” or “Predictors
of stunting AND Africa”. All duplicate articles were eliminated from the results. In total, 28
articles were considered for the final identification of predictors of stunting in the sub-Saharan

African region.

1.2.2. Demographic Factors

According to the study done by Mtambo et al. (2018), the primary factors influencing child
stunting in Malawi were identified as child sex, sex of the household head, type of residence,
maternal education, ethnicity, child age, and maternal height. Child sex was indicated as a
significant determinant of child stunting ( McDonald, et al.; Akombi, Agho, Astell-Burt, Hall, &
Renzaho, 2017; Nshimyiryo , et al., 2019; Woldeamanuel & Tesfaye, 2019; Uwiringiyimana ,
Veldkamp, & Ocke, 2019; Bukusuba, Kaaya, & Atukwase, 2017; Chirande, et al., 2015;
NKkurunziza , Meessen, Van geertruyden , & Korachais, 2017; Dake, Solomon, Bobe, Tekle, &
Tufa, 2019). The geopolitical zone was reported to be an important feature of stunting in a study
that was done in Nigeria (Akombi, Agho, Astell-Burt, Hall, & Renzaho, 2017)

Research conducted in Tanzania observed that the age of a household head <35 years was a
significant feature of stunting (Semali, 2015). The analysis that was done by Haile and others in
2016, the results showed that being male and belonging to a household with a male head were
identified as factors that raised the probability of being stunted. Furthermore, the study observed
that children in the age bracket of 24 and 35 months had higher chances of experiencing stunting
in comparison with children who were under one year old. The educational qualification of the
father, and the mother’s body mass index (greater or equal to 25.0kg/m2) were identified as

some of the community-level factors linked with stunting ( Haile , Azage , Mola , & Rainey,
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2016)Various studies have reported mother’s education is a significant predictor of child stunting
(Akombi, Agho, Astell-Burt, Hall, & Renzaho, 2017; McDonald, et al., 2012; Nshimyiryo , et
al., 2019; Chirande, et al., 2015; Nkurunziza , Meessen, Van geertruyden , & Korachais, 2017,
Cruz, Azpaitia, Suarez, Rodriguez, & Ferrer, 2017; Habimana & Biracyaza, 2019; Haile , Azage
, Mola , & Rainey, 2016; Kofi, 2018). Nkurunziza found that marital status was a contributing
factor of child stunting among children in the age category of 6-23 months. Some studies found
that residence was an important predictor of child stunting ( Kismul , Acharya , Mapatano , &
Hatlgy, 2018; Woldeamanuel & Tesfaye, 2019; Cruz, Azpaitia, Suarez, Rodriguez, & Ferrer,
2017; Mehta, Suchdev, Rhodes, & Williams, 2018). Chirande (2015) conducted an in Tanzania
and found that the birth order of the child and geographical region were important determinants
of stunting. It was also found in other studies that the mother’s height was a factor affecting
child stunting ( Kismul , Acharya , Mapatano , & Hatlgy, 2018; Berhe, Seid, Gebremariam,
Berhe, & Etsay, 2019)

Studies conducted in Africa found that the count of under-five children in the household was
associated with child stunting ( Fikadu , Assegid, & Dube, 2014; Berhe, Seid, Gebremariam,
Berhe, & Etsay, 2019; Cruz, Azpaitia, Suarez, Rodriguez, & Ferrer, 2017; Nkurunziza ,
Meessen, Van geertruyden , & Korachais, 2017; Kofi, 2018). Studies conducted in Ethiopia and
the Democratic Republic of Congo revealed that maternal age was an important variable
affecting stunting (Woldeamanuel & Tesfaye, 2019; Kismul , Acharya , Mapatano , & Hatlay,
2018); Additional case-control research was done in Tigray, North Ethiopia, which concluded
that the body mass index (BMI) of the mother played a significant role in detecting child stunting
within the region ( Berhe, Seid, Gebremariam, Berhe, & Etsay, 2019). It was reported that family
size was one of the predictors of stunting among under-five children ( Fikadu , Assegid, & Dube,
2014; Cruz, Azpaitia, Suarez, Rodriguez, & Ferrer, 2017). Child age was also found to be a
significant determinant of child stunting ( Berhe, Seid, Gebremariam, Berhe, & Etsay, 2019;
Shinsugi , et al., 2015; Chirande, et al., 2015; Uwiringiyimana , Veldkamp, & Ocke, 2019; Dake,
Solomon, Bobe, Tekle, & Tufa, 2019; Sema , Azage , & Tirfie, 2021). A study implemented in
Ghana revealed that ethnicity was among the factors associated with child stunting (Kofi, 2018).
Using standard regression methods on the Rwandan Demographic and Health Survey, Habibana

and Biracyaza indicated that maternal age was a factor influencing stunting among children
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under-five 5 years of age in Rwanda ( Habimana & Biracyaza, 2019). Low maternal height and
mother's literacy were also reported to be predictors of stunting among children under-five years
( Nshimyiryo , et al., 2019). Another study with a specific emphasis on the practices related to
complementary feeding was rolled out in Rwanda and the results showed that the child’s age and
the caretaker’s BMI were important predictors of child stunting ( Uwiringiyimana , Veldkamp, &
Ocke, 2019). In Ethiopia, children belonging to Muslim, Orthodox, and other traditional religious
communities were observed to have increased chances of facing stunting when contrasted to
children from the Protestant community ( Gebru , Haileselassie, Temesgen, Seid, & Mulugeta,
2019).

1.2.3. Economic Factors.

Several studies, particularly those conducted in Africa, have found an association between
economic factors and stunting. One study in Malawi revealed that the working status of the
mother and the availability of radio/TV were significant predictors of child stunting (Mtambo et
al., 2018). Several authors concurred with each other that the household wealth index was an
important determinant of stunting among children in sub-Saharan countries (Akombi, Agho,
Astell-Burt, Hall, & Renzaho, 2017; Nkurunziza , Meessen, Van geertruyden , & Korachais,
2017; Chirande, et al., 2015; Habimana & Biracyaza, 2019). Residing in houses constructed with
wood or straw, or lacking a proper floor, as well as cooking with charcoal, were identified as
factors influencing stunting among children less than five years old in Mozambique. (Cruz,
Azpaitia, Suarez, Rodriguez, & Ferrer, 2017). Mother’s occupation was reported to be an
important determinant of child stunting (Keino, Ettyang, & Borne, 2014; Keino, Ettyang, &
Borne, 2014). Bakasuba reported that food insecurity and type of housing were also important
determinants of child stunting ( Bukusuba, Kaaya, & Atukwase, 2017). Household income had
also been reported to be a predictor of stunting among children less than five years old (Keino,
Ettyang, & Borne, 2014). It was found that children from households that were rearing animals
were less likely to be stunted than those from households that were not rearing animals (
Shinsugi , et al., 2015). It had been revealed that household poverty was also a determinant of
child stunting among children in poor countries ( Nshimyiryo , et al., 2019; Kismul , Acharya ,
Mapatano , & Hatlgy, 2018). In Malawi, it was learned that children from mothers who were on

health insurance were less likely to be stunted than children from mothers who were not on
4



health insurance ( Afolabi & Palamuleni, 2019). Children from households that were depending
on food from the farms (own production) were found to have decreased chances of being stunted
than those who were depending on purchased food from the market ( Tariku , Biks , Derso ,
Wassie, & Abebe, 2017)

1.2.4. Child Caring Practices and Environmental Health Factors

Practices related to childcare and environmental health factors have been reported as
determinants of child stunting in studies conducted in some countries around Africa. In Malawi,
it was shown that vitamin A supplementation, vaccination coverage and period of breastfeeding
were associated with child stunting. ( Mtambo , Masangwi, & Kazembe , 2014) Akombi and
others conducted a study in Nigeria and found that prolonged duration of breastfeeding (>12
months) was a determinant of child stunting (Akombi, Agho, Astell-Burt, Hall, & Renzaho,
2017). One study reported that an unimproved water supply and vitamin A deficiency were
associated with stunting ( Mehta, Suchdev, Rhodes, & Williams, 2018). Another study revealed
that the duration of exclusive breastfeeding, period of breastfeeding and method of feeding
supplementary food were predictors of child stunting ( Fikadu , Assegid, & Dube, 2014). Where
one gets drinking water was also reported to be a significant predictor of child stunting in various
research conducted in Africa ( Mtambo , Masangwi, & Kazembe , 2014; Fikadu , Assegid, &
Dube, 2014; Kismul , Acharya , Mapatano , & Hatlgy, 2018). It was shown that early initiation
of breastfeeding was an important determinant of child stunting among under-five children (
Kismul , Acharya , Mapatano , & Hatlgy, 2018; Kofi, 2018). Consuming fortified food, visiting
antenatal care facilities, sharing toilets and breastfeeding were given as crucial determinants of
child stunting in a study carried out in Rwanda ( Habimana & Biracyaza, 2019). A separate study
carried out in Rwanda demonstrated that exclusive feeding during the preceding six months and
dietary intake of zinc were identified as predictors of child stunting ( Uwiringiyimana ,
Veldkamp, & Ocke, 2019). The results of some studies in East Africa showed that deworming
tablet use was also a significant predictor of child stunting ( Uwiringiyimana , Veldkamp, &
Ocke, 2019; Nshimyiryo , et al., 2019). Kofi conducted a study in Ghana and concluded that
exposure to a proper toilet facility and visiting a health centre were some of the predictors of
stunting among children less than five years old (Kofi, 2018). The use of family planning

5



methods and pre-breastfeeding were also observed to be determinants of stunting in children (
Dake, Solomon, Bobe, Tekle, & Tufa, 2019). Like in other studies in Africa, caregivers’
knowledge of stunting and initiation time to complementary food were reported to be
determinants of child stunting in a study conducted by Bakasuba ( Bukusuba, Kaaya, &
Atukwase, 2017). Nkurunziza and others found that distance to a health facility can also predict
child stunting ( Nkurunziza , Meessen, Van geertruyden , & Korachais, 2017). The availability
of improved latrine facilities was also reported to determine child stunting ( Haile , Azage , Mola
, & Rainey, 2016). Continued breastfeeding for 1 year was revealed to be a significant factor
associated with child stunting ( Nsereko, et al., 2018). Children whose mothers did not
consistently use water and soap for handwashing had higher odds of childhood stunting ( Sema ,
Azage , & Tirfie, 2021). Krasevec and others found that children who were not given food from
animal source on the previous day had elevated chances of being stunted contrasted to children
who were given all three groups of food from animal sources (eggs, meat, and dairy) ( Krasevec,
An, Kumapley, Bégin, & Frongillo, 2017). WHO dietary diversity score was reported to be
associated with stunting ( Berhe, Seid, Gebremariam, Berhe, & Etsay, 2019; Krasevec, An,
Kumapley, Bégin, & Frongillo, 2017). A study conducted in Ethiopia had shown that feeding
powdered or fresh milk, feeding formula, eating organ meat, and taking fruits high in beta-
carotene as part of the diet, and vegetables were significant factors linked to stunting (Ayelignh &
Zerf, 2021).

1.2.5. Obstetric Conditions, Child Iliness and Additional Maternal Factors.

Stunting in children is also linked to obstetric conditions, child illness and additional maternal-
related factors as observed in some studies conducted in sub-Saharan Africa. It was revealed that
infectious diseases were important predictors of stunting in children less than five years in
Malawi ( Mtambo , Masangwi, & Kazembe , 2014). Macdonald and others found that child HIV
infections and low Apgar score at birth were important predictors of child stunting ( McDonald,
et al., 2012). It was revealed that the birth size of the child, place of delivery and low birth
weight were some of the predictors of child stunting ((Akombi, Agho, Astell-Burt, Hall, &
Renzaho, 2017; Nkurunziza , Meessen, Van geertruyden , & Korachais, 2017; Chirande, et al.,

2015). Chirande and others concluded that the type of delivery assistance was one of the factors



affecting child stunting ( Chirande, et al., 2015). Diarrhoea episodes were reported in various
studies as a predictor of child stunting among under-five children in sub-Saharan Africa ( Dake,
Solomon, Bobe, Tekle, & Tufa, 2019; Woldeamanuel & Tesfaye, 2019; Akombi, Agho, Astell-
Burt, Hall, & Renzaho, 2017; Berhe, Seid, Gebremariam, Berhe, & Etsay, 2019). Haile and
others reported that short birth intervals and severe anaemia were factors associated with child
stunting ( Haile , Azage , Mola , & Rainey, 2016). A study that was done in Ethiopia showed
that having a fever influenced stunting ( Sema , Azage , & Tirfie, 2021). Various studies had
shown that being multiple births also significantly increases the odds of childhood stunting (
Gebru , Haileselassie, Temesgen, Seid, & Mulugeta, 2019; Afolabi & Palamuleni, 2019; Ayelign
& Zerf, 2021).

As seen in the preceding review, several potential predictors of stunting in children less than five

years old have been studied. These are summarized in Table 1

Table 1. Characteristic of the selected studies on child stunting and associated risk factors
(no of studies =28)

Number
Type of | of Risk factor
Title Authors, Year Country data children Method identified
Sex of child, Sex of
household head,
Type of residence,
mother's working
status, Vitamin A
supplementation,
Vaccination
coverage,
Availability of
radio/TV, Source of
Analysis Of Childhood Bayesian drinking water,
Stunting in  Malawi Structured infectious  diseases,
Using Bayesian | Owen P. L. Mtambo, Additive maternal  education,
Structured Additive | Lawrence Kazembe Quantile ethnicity, child age
Quantile Regression | and Salute Masangwi Regression and  duration of
Model (2014) Malawi DHS 2138 | Model breastfeeding
Prevalence and
Determinants of
Stunting in Under-five | Innocent Antony
Children in  Central | Semali, Anna Tengia- Age of household
Tanzania: a remaining | Kessy, Elia John head <35yrs,
threat to Achieving | Mubanga, and multivariat Maternal education,
Millennium Germana Leyna Survey e logistic | and ownership of the
Development Goal 4 (2015) Tanzania data 678 | regression mobile phone




underweight  status,
Vitamin A
Determinant of Stunting deficiency,
among Preschool block Unimproved  water
Children in the 2015- stepwise supply, rural
2016 Malawi | Rukshan Mehta, Anne Survey logistic residence, household
Micronutrient Survey Williams (2018) Malawi data regression hunger
low birth weight, size
of the baby at birth,
sex of the child,
Place of delivery,
family wealth index,
Determinant of Stunting maternal education,
and Severe stunting marital status,
among Burundian | Sandra  NKkurunziza, distance to a health
Children Aged 6-23 | Bruno Meesen, Jean- facility, severe food
months: Evidence from | Piere Van Binary and | insecurity, and
a national cross- | Geertruyden, multivariat | number of under-five
sectional household | Catherine Karachais Survey e logistic | years children in the
survey (2014) Burundi data 6199 | regression household.
maternal education,
sex of child (male),
age of the child,
household wealth
index, place of
delivery, type of
Determinants of delivery assistance,
stunting and Severe | Lulu Chirande, birth order of the
Stunting among Under- | Debora Charwe, child, the perceived
Five in  Tanzania: | Hadijar Mbwana, size of the baby at
evidence from the 2010 | Rose Victor, Sebas multiple birth, source  of
cross-sectional Kimboka, Abukar Survey logistic drinking water,
household survey. Ibrahim Isaka (2015) Tanzania data 7324 | regression geographical region
Province, poverty,
Determinant of residence (rural),
Childhood Stunting in mother's height,
the Democratic source of drinking
Republic of Congo: | Hallgeir Kismul, water, early initiation
Further  Analysis of | Pawan Acharya, Mala | Democratic of breastfeeding,
Demographic and | Ali Mapatamo and | Republic of logistic childbirth intervals,
Health Survey 2013-14 | Anne Hatloy (2018) Congo DHS 9030 | regression mother's age >20yrs
mother's height,
mother's body mass
Risk factors of Stunting index, Childbirth
(Chronic weight, number of
Undernutrition) of under-five  children
Children Aged 6 to 24 | Kidanemay  Berhe, in the household,
Months in Mekelle City, | Omer Seid, Yemane repeated  diarrhoea
Tigray Region North | Gebremariam Almez episodes and WHO
Ethiopia:  Unmatched | Berhe, Natnael Etsay Survey logistic dietary diversity
case-control Study (2019) Ethiopia data 330 | regression score
Factors Associated with maternal age, source
Under-five Stunting, of drinking water,
Wasting and sex of the child,
Underweight Based on antenatal follow-ups,
Ethiopian Demographic | Berhann Teshome multivariat | diarrhea  episodes,
Health Survey Dataset | Woldeamanuel, and e binary | household wealth,
in  Tigray  Region | Tigist Tigabie logistic birth  weight, and
Ethiopia Tesfaye (2019) Ethiopia DHS 1077 | regression residence(rural)




Factors Associated with
Stunting Among

Children According to | Chisa Shinsugi,
the Level of Food | Masaki Matsumura,
Insecurity in the | Mohamed  Karama, age of the child,
Household: a cross- | Junichi Tanaka, animal rearing,
sectional Study in a | Mwatasa Changoma multivariat | number of siblings
rural community of | and Satoshi Kaneko Survey e logistic | younger than school
Southern Kenya (2015) Kenya data 404 | regression age
birthweight, maternal
education status,
maternal occupation,
living in rural areas,
family size, number
of children under-
five years of age in
the household,
Loida M. Garcia cooking
Cruz, Gloria withcharcoal,
Gonazlez  Azpeitia, inhabiting wooden or
Factors Associated with | Desderio Reyes straw housing or
Stunting Among | Suarez, Alfredo housing without a
Children Aged 0 to 59 | Santana  Rodriguez, proper floor, duration
Months  from  the | Juan Francisco Loro multiple of breastfeeding
Central  Region of | Ferrer and Lluis | Mozambiqu | Survey logistic complementary
Mozambique Serra-Majem (2017) e data 282 | regression feeding
Etienne Nsereko,
Early feeding practices | AssumptaMukabutera
and stunting in | , Damien Lyakaranye,
Rwandan Children; a | Yves Didier
cross-sectional  study | Umwungerimwiza,
from the 2010 Rwanda | Valens Mbrushimana, multivariat continued
Demographic and | Manasse Nzayirabaho e logistic | breastfeeding for 1
Health Survey (2018) Rwanda DHS 1634 | regression year
Predictors of Childhood
Stunting in Ghana: A early initiation of
cross-sectional  survey breastfeeding, access
of the Association to  proper toilet
Between Stunting facility, mother’s
among children under level of education,
age five and maternal ethnicity, access to
bio-demographic  and health care, number
socioeconomic of under-five
characteristics in Ghana | Janet Oyedi  Kofi logistic children  in  the
2014 (2018) Ghana DHS 2759 | regression household (>20
Predictors of Stunting | Samson Kastro Dake,
among Children 6-59 | Fithamlak Bisetegen
months of Age in Sodo | Solomon,  Testahun sex of the child, Age
Zuria District, South | Molla Bobe, Habtamu of the child, use of
Ethiopia: a community- | Azene Tekle and multivariat | family planning,
based  cross-sectional | Efrata Girma Tufa Survey e logistic | diarrhea morbidity,
study (2019) Ethiopia data 342 | regression Pre-lacteal feeding




Predictors of Stunting
with Particular Focus on

Age of child,
exclusive
breastfeeding,

Complementary feeding | Vestine deworming tablet use
practices: a  cross- | Uwiringiyimana, in the previous 6
sectional Study in the | Marga C. Ockey, months, caretaker
Northern Province of | Sherif Amer, Antonie Survey logistic body mass index and
Rwanda Veldkamp (2018) Rwanda data 138 | regression dietary zinc intake.
Alphonse Nshimyryo,
Bethany Hedt-
Risk Factors for | Gauttier, Christine Sex of child, age of
Stunting among | Mutaganzwa, the child, low birth
Children Under-five | Catherine M. Kirk, weight, low maternal
Years: a cross-sectional | Kathryn Beck, Albert height, mother's
population-based Study | Ndayisaba, Joel education, mother's
in Rwanda Using 2015 | Mubiligi Fredrick literacy, deworming
Demographic and | Kateera and Ziad El- logistic tablet use, poverty of
Health Survey Khatib (2019) Rwanda DHS 3594 | regression household.
Sex of the child, food
insecurity, initiation
time to
Predictors of stunting in complimentary food,
Children Aged 6 to 59 | John Bakusuba, caregiver's
Months: a case-control | Archileo N. Kaaya, multiple knowledge about
study in  Southwest | Abel Atukwase Survey logistic stunting and type of
Uganda (2017) Uganda data 168 | regression housing.
Risk Factors of Stunting
Among Children Under- maternal education,
five 5 Years of Age in maternal age,
the Eastern and Western maternal occupation,
Provinces of Rwanda: wealth index, sex of
Analysis of Rwanda the child, fortified
Demographic and | Samuel  Habimana, multiple food intake, antenatal
Health Survey | Emmanuel Biracyaza logistic care visit,
2014/2015 (2019) Rwanda DHS regression breastfeeding
sex of the
child(male), mother's
perceived birth size
(small and average),
Blessings J. Akombi, household wealth
Kingsley E. Agho, index, duration of
Stunting and Severe | John J. Hall, Andre breastfeeding (more
Stunting among | M.N Renzabo than 12  months)
Children Under Five | Thomas Astell- multilevel geopolitical zone,
Years in Nigeria: a | Burtand Dafna logistic and diarrhea episodes
multilevel analysis Merom (2017) Nigeria DHS 24529 | regression prior to the survey.
family size, number
of under-five
children in  the
household, maternal
Factors Associated with occupation, duration
Stunting Among of exclusive
Children of 24 to 59 breastfeeding,
Months in  Meskan duration of
district, Gurage Zone, | Teshale Fikadu, breastfeeding and
South Ethiopia: a case- | Sahilu Assegid, Survey logistic method of feeding
control study. Lamessa Dube (2014) | Ethiopia data 242 | regression complementary food.
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short birth interval,
sex of the child, sex
of household head,
age of the child,

severe anaemia,
mother's  education,
father's education

Exploring Spatial level, mother's body
Variations and Factors | Damewoz Haile, mass index, family
Associated with | Muluken Azage, multilevel wealth, and
Childhood Stunting in | Tegegn Mola, multivariat | availability of
Ethiopia: Spatial and | Rochelle Rainey e logistic | improved latrine
multilevel analysis (2016) Ethiopia DHS 9893 | regression facilities
low maternal
education, few
CM McDonald, R. household
Predictors of Stunting, | Kupka, K.P Manji, J possessions, low
Wasting and | Okuma, R. J Bosch, S infant birth weight,
Underweight among | Abound, R. Kisenge, Multivariate | child HIV infection,
Tanzanian Children | D. Spiegelman, W. Cox sex of the child and
Born to HIV-infected | W. Fawzi and C. P. survey proportional | low Apgar score at
Women Duggan (2012) Tanzania data 2387 | hazards birth
Childhood Stunting and
Associated Factors
among Irrigation and
Non-irrigation  Users,
northwest Ethiopia: A | Balew Sema, Multivariate | Child age, ANC
comparative cross- | Muluken Azage, Survey logistic visit, fever, ways of
sectional Study Mulat Tirfie (2021) Ethiopia data 1164 | regression hand washing habits
Diet Quality and Risk of | Julia Krasevec,
Stunting among Infants | Xiaoyi An, Richard
and Young Children in | Kumapley, France Multiple Dietary diversity,
Low-and Middle- | Begin, Edward A. logistic animal source food
Income Countries Froyginllo. () LMIC DHS 74548 | regression consumption (ASF)
Determinants of
Stunting among Under- | K. Fantay Gebru,
five Children in | W.Mekoonnen
Ethiopia: A Multilevel | Haileselassie, Child age, child size
mixed- effects analysis | A.Hafton Temegen, at birth, child sex,
of 2016 Ethiopian | A.  Oumar  Serd, Multilevel maternal  education,
Demographic and health | B.Afework Mulugeta. logistic poverty, multiple
survey data (2019) Ethiopia EDHS 8855 | regression births, religion
Child sex, anaemia,
location, wealth
index, mothers’
education, multiple
births, child size at
Determinants of birth, mother’s
Stunting among Under- | Felix Afolabi, Martin weight, health
five Children in Malawi | E Palamuleni (2019) Malawi DHS 5707 insurance,
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Household, Dietary and

Maternal education,
child sex, possession
of refrigerator,
possession of
television, multiple
births, type of
cooking fuel, feeding
powdered or fresh
milk, formula
feeding, consumption
of organ meat, ANC
follow-up, birth size
deworming  during
pregnancy, feeding
beta-carotene rich

Healthcare Factors fruits and vegetables,
Predicting  Childhood | Abebe Ayelign, Logistic house main floor
Stunting in Ethiopia Taddese Zerfu (2021) | Ethiopia EDHS 11023 | regression materials

Amare Tariku,

Gashaw  Andargie

Biks, Terefe Derso, Mother’s occupation,
Stunting and its | Molla Mesele postnatal vitamin A
Determinant Factors | Wassie, Solomon supplementation,
among children aged 6- | Mekonnen  Abebe Survey Logistic wealth index, Source
59 months in Ethiopia. (2015) Ethiopia data 1295 | regression of family food
Prevalence and
Determinants of | Akhlu Abrham Roba,
Concurrent Wasting and | Nega Assefu, Yadeta
Stunting and Other | Dessie, Abebe Tolera Child age, child sex,
Indicators of | Kedir Teji, Hemler cough, maternal,
Malnutrition among | Elena,Lilia education  maternal
Children 6-59 months | Bliznashka, Wafaise Survey Logistic occupation, maternal
old in Kersa, Ethiopia Fawzi. Ethiopia data 1091 | regression BMI

About 28 articles were reviewed in this study. Table 1 presents details of the studies that were

reviewed. Many of the studies considered in the analysis were implemented in countries located

in Eastern Africa. The sample sizes ranged from 138 to 74,548. The factors consistently linked to

stunting, as indicated in Table 1, include the child's sex, maternal education, geographical

location, the count of under-five children in the household, family size, wealth index, instances

of diarrhea, birth weight, multiple births, and the age of the child. The study applies a series of

variable selection methods using a multivariable logistic regression to identify the best predictive

factors for child stunting.

1.3. Variable Selection

According to Heinze et al. (2017), statistical models can be described as straightforward
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mathematical principles derived from empirical data that depict the relationship between an
outcome and multiple explanatory variables. One of the problems in building a simple model is
how to choose a subset of independent features to include in a model among the many variables
that a researcher is presented within the dataset. Many scientists know the existence of several
variable selection algorithms and their use, but they do not know that they produce poor-
performing models (Ratner, 2010). Model building strategy is dependent on the purpose and the
discipline of study. Some variable selection algorithms work well in other disciplines and do not
perform well in other disciplines. The purpose of different variable selection methods in model
fitting is to develop a simpler statistical model that is valid, provides predictions with acceptable

accuracy, and is practically useful (Heinze, Wallisch, & Dunkler, 2018).

In most cases, the use of variable selection algorithms has been guided by the researcher’s
preference or experience. Automated techniques such as stepwise methods are commonly used
and can be done using several statistical software packages that are on the market ( Liao & Lynn,
2010). This has been the case even though the efficiency of stepwise selection of variables
compared with other strategies such as all possible subsets, forward and backward elimination
and LASSO in modelling health-related outcomes using logistic regression is not known. The
weakness of stepwise in binary logistic regression is well documented. The R-squared values that
are provided by the stepwise method of selecting variables tend to exhibit a strong bias towards
higher values, and the regression coefficients derived from them are biased and require
adjustment (Ratner, 2010).

A balance must be struck between model complexity and its usefulness when building a model.
Furthermore, it is important to apply judgment based on the researcher’s expertise in the subject
area so that variable selection is not only driven by statistical significance. Without this balance,

one runs the risk of having a model with covariates without any predictive significance.

The process of selecting variables has gathered significant attention in various fields of research,
including the sector of health, and has become a focal point of extensive research. The variable
selection offers numerous advantages, including augmenting the predictive performance of a

model, providing a more concise and cost-effective set of variables by reducing training and
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utilization time, enabling data visualization, and providing a complete comprehension of the
fundamental data generation process (Chowdhury & Turin, 2020). There are many determinants
of stunting, however, it is difficult to use all the determinants to predict stunting. Hence, it would
be more robust to select the best predictors that will help predict stunting. This can be achieved
by applying the various statistical methods that have been developed for variable selection. The
main problem faced then would be to build a model from a broad range of variables that should

be incorporated into the "optimal™ model to predict child stunting in sub-Saharan Africa.

1.4. Aims and Objectives.

The overall objective of this thesis was to develop and validate a child stunting prediction score
in the context of sub-Saharan Africa (SSA). This was accomplished through the following
objectives:

a) A review of selected studies to detect predictors of stunting in children, aged 0-59
months in SSA.

b) To compare the selected predictor variables of child stunting between six variable
selection methods, namely forward selection, backward elimination, and stepwise
selection; Least absolute shrinkage and selection operator (LASSO); and random
forest

c) To compare the discriminative performance of the selected six sets of variables ((in b)
above) in a multivariate logistic regression model for risk prediction score for child

stunting.
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CHAPTER 2

ANALYSING BINARY OUTCOME DATA

2.1. Binary Outcomes in Health Studies

In health sciences research, several outcomes are measured on different scales. A common
measurement is where the interest is in the existence or nonexistence of a disease or condition
resulting in binary outcomes. For example, in medical research interest could be in assessing

whether a patient is dead or alive, the success of a treatment (cured or not cured) and whether a

child has a growth condition (stunted and not stunted). Assume for subject i, i=1... N a binary
response Y with categories 0 and 1 is observed. In this study Y=1, represents a stunted child and
Y=0 represents a child who is not stunted. Several approaches are used to analyze binary
outcomes which include probit, logistic regression, naive Bayes, decision trees, support vector
machine, and k-nearest neighbour. The most common approach is the logistic regression model
because it does not require greater computational capacity. Therefore, logistic regression is
comparatively simpler to implement, interpret, and train when compared to other machine
learning models. Logistic and probit models do not have many differences. The differences
between probit and logistic regression are just theoretical, the logistic model employs logit
transformation, whereas the probit model utilizes the inverse Gaussian link for their respective
computations. In this study, logistic regression is employed. The next section provides a brief
description of statistical approaches for binary outcomes with much emphasis on the binary

logistic model.

2.2. Binary Logistic Regression Model.

Consider the response Y as defined in section 2.0 where Y; takes values of 0 or 1 for the child i
and considers observed data asQ=(Y.X), and X' =(Xy,X;.-Xy) is the observed 1 by g

vector of covariates representing the characteristics of a child i. If the study assume that 7(%) is

a probability that a child | with covariates X; takes a valueY; = 1, the distribution for this
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outcome, Y; = 1 is specified by the Bernoulli distribution as

p(Y; =11 X; =x)=pi(x) "y, =01
The logistic regression then fits the probability function.

() =2l )

1+ exp(a+ ) (1)
The probability that the subject does not have the outcome (stunting) isl—”(x), thus one can
have.
- n(x)=1-20lat )
1+ exp(a + ﬂX) )
1) L Opla /) E0la-+ 5)
1+ exp(a + [)’X) 3)
Equation 3 simplifies equation 4 as follows.
1
1-7(x)=
( ) 1+ eXp(a + ﬂX) (4)

Therefore, the odds of a child experiencing stunting is expressed as
a(x) _ expla+ pxfL+exp(a+ px)]
1-72(x) 1+exp(a + ) 5)

Simplifying equation 5 gives equation 6 below.

) epfas
) xpla+ fx) ©

This is the proportion of the likelihood of being stunted and the likelihood of not being stunted.
By taking the log of the odds of being stunted which is expressed as a function of the covariates

gives equation 7:

g ) (a4
09~ = A -

A researcher is interested in observing if the probability of being stunted is higher or lower than

the odds of not being stunted.
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2.3. Parameter Estimation

Logistic regression intends to approximate the unknown parameters, in equation 4. Equations
attained with the ultimate likelihood approximation which requires discovering a collection of
parameters for which the chance of the recorded data is maximum. The highest likelihood

expression is obtained from the probability distribution of the response variable (Czepiel, 2002).

By utilizing this approach, values of # are derived to optimize the likelihood function. As each

Yi' corresponds to an individual binomial count within the i population, the contribution of
each subject (child) i to the likelihood function is determined for a specific value of the predictor

X, and the function can be presented as.

P(Y =1|x)" xP(Y =0[x)"” ©)
Hence, when Y equals 1, the contribution is represented as P(Y =11X)  and when Y equals 0,

the contribution transforms into P(Y =0[x)
Therefore, the joint probability density function of Y is given by multiplying the individual
contributions, and it is gotten by:
N n; -
f(y/ﬂ)=H( jﬂiy‘(l—ﬂi)' !
i=1

Yi

(9)
Where \Yi/ are various permutations for arranging Yi successes (stunted children) from among

i trials (children). %i is the chance of a child being stunted for any single of the Mi children,

and 1-7, is the chance of a child who is not stunted.

The values of # are stated based on predetermined fixed values for y, and this can be presented
as.

N [/ ny

L(ﬂ/y):H( }”iyi (1_7Ti)' '

i=1 \Yi

(10)
The quantities of £ that optimize Equation 10, are referred to as the greatest likelihood
estimates. The log-likelihood expression is a more conceivable form of the function above. It is
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formed by applying the natural logarithm to equation 10. In general, the log-likelihood is easier

to work with, and mathematically it is expressed as.

n

1(B1y)=>"[yi log(z )+ (1~ y;)log(l— )]

i1 (112).

By differentiating this function concerning # and equating the expression to zero, the estimated

quantities of the parameters can be obtained. To work out the equations and obtain the resulting

values # | an iterative method known as Newton-Raphson is employed. Other methods are used
to estimate model parameters. The Markov Chain Monte Carlo (MCMC) estimation algorithm is
also used for parameter estimation (Nemeth, 2014). Others have used ridge regression estimation
methods to estimate parameters in regression (Dorugade, 2014).

2.4. Variable Selection Methods

Numerous methods for variable selection have been proposed; however, there is no consensus on
a single approach that consistently performs well under all circumstances. Therefore, for each
dataset, the technique for variable selection should be carefully chosen ( Khiabani,
Ramezankhani, Azizi, & Hadaegh, 2015). One direct technique for variable selection involves
leveraging subject matter expertise acquired through literature review and expert consultations.
However, it is worth noting that these options may not always be accessible. Another frequently
employed method involves utilizing p-values for examining statistically significant predictors
either through univariable analysis or by employing a multivariable forward or backward
selection process. Various variable selection techniques are formally available in purchased
software packages. Commonly used techniques, which are of interest in this thesis are forward
selection, backward elimination, stepwise, least angle regression and shrinkage (LARS), Least
absolute shrinkage and selection operator (LASSO) and random forest variable selection. Some

of these variable selection methods are discussed below.

2.4.1. Backward Elimination (BE)
It is the most straightforward algorithm for selecting features. It begins with a model that

includes all potential features. One by one, the features are removed from the model until only
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those that contribute significantly to the outcome remain in the model. The removal process
starts with the feature that has minimal impact on the model. The feature that has the smallest p-
value below the threshold value or the variable with the utmost p-value above the threshold value
is considered to provide a minimal contribution. After removing the least significant feature, the
model is modified with that variable excluded, and the p-values are recalculated. This repetitive
process continues, removing variables having the minimum p-value or the largest p-value
exceeding the designated threshold in each model, which is then refitted accordingly. The
approach is replicated until all remaining features are regarded as significant at the specified
threshold value. This specified threshold figure is termed as 'p-to-remove' and should not always
be put at 0.05 (Chowdhury & Turin, 2020). Pual and others recommended a p-value between
0.15t0 0.2 (Paul , Pennell, & Lemeshow, 2013). This is to make sure that all relevant variables
are included in the model.

2.4.2. Forward Selection (FS).

This technique for feature selection is the opposite of the backward elimination algorithm. The
method commences with zero variables in the model and afterwards, variables are incrementally
added to the model until none of the variables not incorporated in the model can introduce any
substantial impact to the model’s output. During each repetition, the added variables are
assessed for potential addition in the model. The p-value is calculated if an added variable is
considered. The variable that yields the highest test statistic exceeding the cutoff value or the
smallest p-value below the cutoff value is chosen and incorporated into the model. Essentially,
the variable with the highest level of significance is prioritized for addition. Subsequently, the
model is readjusted to include this variable, and new p-values are figured for the features that
remain in the model. Once more, the variable that has the highest test statistic surpassing the
cutoff value or the lowest p-value below the cutoff value is selected from the features that remain
and are included in the model. This procedure is continued until no more features are significant
at the designated cutoff value when included in the model. A feature that is included in the model

will not be removed from the model. (Chowdhury & Turin, 2020)
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2.4.3. Stepwise Selection

It involves both forward and backward selection methods, allowing the inclusion and removal of
variables in different steps. It can begin with either a backward elimination or a forward selection
process. If forward selection is selected, variables are appended to the model one after the other
according to their statistical significance. After each addition, the process assesses every variable
already incorporated in the model and removes any that are not significant. This process goes on
until all variables in the model are significant and all excluded variables are insignificant. This
approach is sometimes considered an altered version of forward selection, although variables
incorporated into the model may not necessarily stay in it. On the other hand, if backward
elimination is the starting point, variables are originally eliminated from the model with all
variables based on statistical significance. However, if any of the previously excluded variables
later indicate significance, they are added again into the model. This process involves iteratively
selecting the feature offering the least contribution to eliminate from the model. After this, all
eliminated variables are reassessed for potential reintroduction. Two distinct significance levels
(cut-offs) are required in Stepwise selection for removing and adding the variables in the model.
The significance value for incorporating features should be more accurate compared to that for
removing variables to avoid the process from entering an infinite loop. Backward elimination is
often preferred within stepwise selection because it analyzes the model with all features™™ and

evaluates the impact of all contender variables (Chowdhury & Turin, 2020).

2.4.4. Least Absolute Shrinkage and Selection Operator (LASSO)

A penalty is applied to the totality of squares or log-likelihood, which corresponds to the
absolute addition of regression coefficients. LASSO regulates the selection of features by
reducing the residual addition of squares while ensuring that the addition of the absolute figures
of the coefficients stays below a constant threshold, t . Mathematically, it can be represented as

follows.

J(B)argmin =y - XA +4(n)> ] B
p = (12)
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The use of LASSO as a feature selection technique can be seen from the fact that decreasing the

values of A lead to shrinkage of regression coefficients and some of these even become zero.

2.4.5. Least Angle Regression and Shrinkage (LARS)

Least angle regression (LARS) is a sophisticated approach to model selection that can be
considered an advancement of the stagewise algorithm, providing quick calculations (lturbide et
al., 2013). The approach begins by loading all coefficients as zero and captures the covariates
that show the highest correlation with the response variable. After that, LARS takes a step of
maximum magnitude in the route of this independent variable until another independent variable
becomes equally correlated with the remaining residual. At this stage, LARS continues by
moving in a route that has equal angles between the two features until the K-th feature is
included in the model denoted as Pk. In the case where K is equal to the total number of
covariates, a logistic model is obtained. The objective is to select an appropriate value for K that
results in a more straightforward and more inclusive model. A cross-validation procedure is
employed to choose the optimal number of independent variables to be incorporated into the

ultimate model.

2.4.6. Random Forest

Random forest is built upon the bagging technique. This technique involves creating multiple
subsets of the original dataset through resampling with replacement. Each subset is then used to
train a separate model, and the final prediction is obtained by aggregating the predictions of all
the individual models to each sample. The random forest technique is employed to calculate
variable importance metrics, allowing for the ranking of variables based on their predictive
importance. Permutation importance is employed, which is computed by comparing the
prediction performance before and after permuting the variable values, averaged across all trees.
The importance calculation in each tree only considers out-of-bag observations (Degenhardt,
Seifert, & Szymczake, 2019). The variables that have large importance values are relevant for
prediction and those variables with values of importance close to zero, are said to have no

association with the outcome of interest.
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2.4.6.1. Boruta Method
Boruta was developed as an extension to the Random Forest algorithm, and it is a popular
ensemble learning method. Boruta is designed to detect the most relevant features in a dataset by

comparing them to randomized versions of the features in the dataset.

The main idea behind Boruta is to determine the importance of features by comparing their
performance to that of randomly created "shadow™ features. These shadow features are created
by permuting the values of the original features while keeping the target variable unchanged. The
Boruta algorithm then uses an altered Random Forest model to assess the importance of the
original features comparative to the shadow features.

During the procedure, Boruta allocates a measure of importance, called the "Z-score,” to each
variable. The Z-score indicates the degree of evidence that a variable is truly important compared
to the shadow variable. Boruta increasingly eliminates immaterial features by iteratively

comparing their Z-scores to a threshold value.

At the end of the procedure, Boruta produces a set of variables that have been selected to be
significantly more important than the shadow features. These important features can be used for

further analysis or as input to other machine learning models.

2.4.7. Judgement Variable Selection Method

Numerous methods for variable selection have been proposed; however, there is no consensus on
a single approach that consistently performs well under all circumstances. Therefore, for each
dataset, the technique for variable selection should be carefully chosen ( Khiabani,
Ramezankhani, Azizi, & Hadaegh, 2015). In statistical analysis, prior knowledge derived from
scientific literature is considered the primary basis for determining the inclusion or exclusion of
covariates. However, such information may not always be accessible for all research questions
(Walter & Tiemeier, 2009). The judgement variable selection method relies on field expertise

acquired through reviewing relevant literature and consulting with experts.
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2.5. Stopping Rule/Selection Criteria in Variable Selection.

It is important to know when to stop the process of including and excluding variables during the
variable selection procedure. A standard significance level for hypothesis testing such as a p-
value is often used. Other criteria that are also used as stopping rules are Akaike’s information
criterion (AIC), Bayesian information criterion (BIC), and Mallows’ Cj statistic. These are also

employed as model assessment tools, and they are discussed below.

2.6. Model Selection Methods

When selecting a criterion for model selection, it is acknowledged by the researchers that models
serve as approximations of reality. When provided with a dataset, the goal is to identify the
candidate model that best approximates the data. This entails attempting to minimize the loss or
reduction of information. As such, AIC, BIC, and Mallows’ Cp statistics are used for model

selection.

2.6.1 Akaike’s Information Criterion (AIC)

The Akaike’s information criterion (AIC) was established by Akaike in 1973. It is a
mathematical technique applied to judge the degree of alignment between a model and the data
from which it was derived. The AIC (1973) is defined as

AIC = 2K —2In L(3) (13)

Where K is the number of estimated parameters in the candidate model and L(ﬁ) is the estimate
from the log-likelihood function. AIC quantifies the comparative information content of a model
by utilizing maximum likelihood estimates and counting the number of parameters involved in
the model, as indicated in the above-mentioned formula. It is employed to assess and distinguish
various potential models, helping in the identification of the best-fit model that is consistent with
the given data. It is also used as a stopping rule in variable selection methods. The model giving

the smallest AIC over the set of models considered is selected as the best model.

For a small sample size, a modified form called AlICc is used instead of the AIC above. The

AlICc is given by.
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- (2K +1)
AIC, =-2log L{f )+ 2K + ~—~"=L
’ (ﬁ)+ k-1 (14)

Where n is the sample size

2.6.2. Bayesian Information Criterion (BIC)
Another method for scoring and selecting a model is the Bayesian information criterion (BIC). It

uses optimum likelihood estimates like AIC. Mathematically it is expressed as
BIC =—2L(3)+ K log(n) (15)

Where K is the number of parameters estimated in the candidate model and '—(ﬁA) Is the estimate
from the log-likelihood function and n is the size of the sample. Through the blending of a
punishment term based on the number of independent parameters, the Bayesian Information
Criterion (BIC) tends to prioritize models that display simplicity or parsimony (A. Berchtold,
2010). The BIC imposes a severe penalty on more complex models, making them have larger
scores and less likely to be selected (Jason Brownlee, 2019). Like in AIC, the model exhibiting

the minimum BIC score is selected as the superior model.

2.6.3. Mallows’ Cp Statistic

The Mallows’ Cp criterion was put forward by Mallows in 1972. It relies on the calculation of the
mean sum of squared errors (MSSE) as the basis. In the context of a model with P-independent
features, the MSSE can be stated as.

MSSE, = E(RSS, )+2po? —no? (16)
The assumption in the Ce criterion is that the model with all the K-independent variables

involved is correct (Sembiring and Tarigan, 2018). C, criterion for a smaller model fitted using

any subset with p-independent variables where P<k, is expressed as.
— 2 2
Co —RSSp+2pO' -No (17)
5 = RSS,

This ois an unbiased estimator and is estimated by the following, N—=P  where RSS¢ is

the residual of the sum of squared values within the model with all the K variables. As in AIC
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C

and BIC minimum “~r denote the best model.

2.7. Assessment Methods for Prediction Models

A variety of varied algorithms and measures of performance can be utilized to evaluate the
effectiveness of prediction models. The commonly used measures for binary response variables
include the following: Sensitivity, Positive Predictive Value (PPV) and Negative Predictive
Value (NPV), Specificity and receiver operating characteristics (ROC). The Brier score,
concordance (or C) statistic, and the goodness-of-fit statistic have also been used ( Steyerberg &
Vergouwe, 2014). The area under the receiver operator curve is applied to judge the capability of
the overall model to classify the outcomes of a disease condition.

2.7.1. Receiver Operating Characteristics (ROC)

Receiver Operating Characteristics (ROC) curves are often used to access the ability of a risk
factor to predict an outcome. Often a risk factor is included in a logistic regression model to
forecast the likelihood, for example, of a child being stunted. These predictive probabilities or
risks can be examined to see how accurate they are at identifying children who would be stunted
or not stunted. Discrimination is commonly measured using ROC curves. The AUC - ROC curve
is a way to evaluate how well a model can classify data into different categories at different
threshold levels. The ROC curve is a graphical representation of the model's capability to
differentiate between the categories, and the AUC (Area Under the Curve) is a numerical
representation of this ability. A larger AUC reveals a better ability of the model to distinguish
between the categories, like how a model that can better differentiate between stunted and non-

stunted children would have a higher AUC.

In this process, the predicted probabilities of stunting are repeatedly dichotomized into above
versus below cut-off points. For each cut-off point, one can estimate the sensitivity (probability
that the predicted risk is above the cut-off point among stunted children) and specificity
(probability that the predicted risk is below the cut-off point among children who are not

stunted). The ROC curve is a plot that illustrates the correlation between sensitivity and 1-
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specificity across various potential cut-off points. This is plotted by varying the cut-off points to
display a spectrum of sensitivity versus specificity. The area under the ROC curve (AUROC) is a
useful metric for summarizing the ROC curve. If the ROC curve reaches the top corner of the
plot (100% sensitivity and 100% specificity) then the model is said to have perfect
discrimination. A diagonal ROC curve indicates random classification. For binary outcomes, the
concordance statistic is identical to the AUROC ( Steyerberg & Vergouwe, 2014). The AUROC
was used to measure discrimination in which models were used to predict acute kidney injury
(Davis, Lasko, Chen, Siew, & Matheny, 2017).

2.7.2. Sensitivity, Specificity, Positive Predictive Value (PPV) and Negative Predictive Value
(NPV).

Sensitivity, negative predictive value (NPV), and positive predictive value (PPV), specificity, are
significant statistical measures used in diagnostic testing and screening tools. These measures

provide details regarding the effectiveness or accuracy of a test or screening tool.

Sensitivity refers to the capacity of a test to accurately detect individuals who exhibit stunting
(true positives). By dividing the count of correctly identified positive cases (TP) by the
summation of true positives (TP) and false negatives (FN), sensitivity can be calculated.
Sensitivity = TP / (TP + FN). Sensitivity is an indicator of the test's capability to correctly detect
stunting when it is present. Higher sensitivity means that the test has a lower rate of false
negatives. Sensitivity varies with disease prevalence ( Maxim, Niebo, & Utell, 2014)Specificity refers
to the test's competence to accurately identify individuals who are not stunted (true negatives).
By dividing the count of accurately identified negative cases by the sum of true negatives and
false positives, specificity can be figured out. Mathematically it can be indicated as: Specificity =
TN / (TN + FP). Specificity is a metric of the test's proficiency to precisely rule out stunting
when it is not present. Higher specificity means that the test has a lower rate of false positives.

Like sensitivity, specificity is not independent of prevalence ( Maxim, Niebo, & Utell, 2014)

Negative Predictive Value (NPV) is the likelihood that a child who is predicted not to be stunted

is not stunted. It is determined as the ratio of true negatives to the sum of those accurately
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identified negatives and false negatives. NPV can be calculated using the following formula:
NPV =TN /(TN + FN). NPV depends on both sensitivity and specificity, as well as prevalence.
As prevalence increases, the NPV decreases because there is a higher chance of false negatives,
irrespective of whether the test exhibits high sensitivity and specificity. Positive Predictive Value
(PPV) is the chance that a child who is predicted to be stunted is stunted. It is determined by
dividing the count of true positives by the summation of true positives and false positives. The
formula is given by: PPV = TP / (TP + FP). PPV also depends on sensitivity, specificity, and
prevalence. The PPV increases as prevalence increases because there is a higher chance of true

positives, even if the test has the same sensitivity and specificity.

Sensitivity and specificity play a crucial role in prediction because they directly reflect the
performance of a diagnostic or predictive test. They offer information about the precision of the
test in correctly identifying individuals with or without a particular condition or outcome.
However, the frequency (prevalence) of the disease condition in the population being tested

affects Sensitivity, specificity, PPV and NPV.

High sensitivity is most useful in situations where the consequences of a false negative result are
significant. For example, in disease screening and infectious disease testing where it is important
to identify as many true positive cases as possible to ensure early detection and intervention. On
the other hand, high specificity is most useful in situations where the consequences of a false

positive result are significant. For example, in confirmatory Tests.

It is important to note that striking the desired equilibrium between sensitivity and specificity
depends on the specific context and potential consequences of false positives and false negatives.
The appropriate choice of sensitivity or specificity is influenced by the objectives of the test, the
prevalence of the condition, the availability of follow-up tests, and the potential risks associated

with false results.

2.7.3. Likelihood Ratio
Likelihood ratios (LR) are statistical measures utilized to evaluate the diagnostic or prognostic

value of an examination result. They provide information about how much a positive or negative
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test result changes the odds of having a disease or experiencing a particular outcome. There are
two types of likelihood ratios: the positive likelihood ratio (LR+) and the negative likelihood
ratio (LR-). The positive Likelihood Ratio (LR+) refers to the ratio of the chance of acquiring a
positive test result in children who are stunted to the likelihood of acquiring a positive test result
in children who are not stunted. Mathematically, LR+ is determined as the quotient of sensitivity

of the test and one minus the specificity of the test. Thus LR+ = Sensitivity / (1 — Specificity).

The LR+ indicates how much the chances of being stunted are raised given a positive test result
is obtained. An LR+ larger than one suggests a correlation between a positive test result and an
increased likelihood of being stunted. A stronger association is indicated by higher LR+.
Generally, LR+ values above ten are considered strong evidence for ruling in the disease
(stunting), while values below one suggest a weak association or a test result that has a higher

chance of being a false positive.

The term Negative Likelihood Ratio (LR-) is given to the ratio of the odds of getting a negative
test result in children who are stunted to the odds of having a negative test result (not stunted) in
children who are not stunted. Mathematically, the following formula calculates LR-. LR- = (1 -
Sensitivity) / Specificity. The LR- indicates how significantly the odds of being stunted are
scaled down given that a negative test result is observed. An LR- lower than one denotes that a
negative test result is linked to a diminished likelihood of having the disease. The lower the LR-,
the stronger the association. LR- values closer to zero indicate a strong rule-out potential, while
values above one suggest a weak association or a test result that has higher odds of being a false

negative.

2.7.4. Brier Score

The Brier score is a quadratic principle that determines the squared differences (Y - P)2 between
true binary results (Y) and projections (P). It ranges from 0 to 0.25. Zero indicates a complete
model and 0.25 denotes a non-informative model assuming a 50 per cent occurrence of the
disease condition. When the occurrence of the disease condition is less frequent, the highest

possible mark for a non-informative model is reduced ( Steyerberg & Vergouwe, 2014). The
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study conducted by Kantidakis, and others used the Brier score to compare Cox models and

machine learning techniques ( Kantidakis, et al., 2020).

2.7.5. Calibration

Calibration refers to the precision of risk approximates, specifically the concurrence between the
predicted and recorded counts of events ( Van Calster, McLernon, van Smeden, Wynants, &
Steyerberg, 2019). Calibration is typically assessed graphically as the plot of predicted
probability versus observed proportion. The x-axis of the graph represents the predictions, while
the y-axis represents the outcome. The ideal prediction would align perfectly with the 45-degree
line on the graph. In the case of a binary outcome, the y-axis of the plot includes values of 0 and
1. In research implemented by Dhillon et al., in 2016, calibration was employed to project the
likelihood of having a live birth for women undergoing in vitro fertilization (IVF) (Dhillon, et
al., 2016).

2.7.6 Model Testing and Evaluation.

After randomly dividing the dataset into two a training set and a test set, typically using an 80/20
split, the optimal model parameters are adjusted using the training set. To prevent overfitting, the
model is evaluated on a separate test set that was not exposed to the models during the training
process. The efficiency of the model on the test data set is assessed by generating ROC curves
and calculating the corresponding AUC. The AUROC serves as an indicator of the model's
proficiency to distinguish or classify disease outcomes. When constructing the ROC curve, the
true positive rate (TPR) is compared to the false positive rate at different thresholds. The model's
performance is assessed by utilizing the AUROC. The AUC ranges from 0.50 to 1. Values close
to 1 indicate stronger classifying capability. A model with a value of 1 represents a perfect
classifier. An excellent model has values ranging from 0.90 to 0.99, a range of 0.80 to 0.89 is
considered a good classifier while 0.70 to 0.79 is a fair model but 0.50 to 0.69 denote a poor
predictive ability. When the curve is diagonal (AUC= 0.50), the model is said to be a random
classifier meaning that the classification is by chance. To conduct a thorough evaluation of
model performance, the sensitivity, PPV, and NPV are all considered. The model that attains the

highest average performance metric (AUROC) is deemed the optimal predictive model for
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stunting.

2. 9. Prediction Score

Scoring refers to the process of generating predictions using a predictive model. Scoring
necessitates three components: The first requirement is a predictive model, which is a
mathematical approach represented by f (x, B). It combines predictor variable values (x) with
specific quantities (), known as model parameters, to generate predicted values for the target or
response variable. Secondly, it is necessary to have specific values for the forecaster variables,
usually from new data that the model had not seen. Lastly, specific values of the parameters are
also needed. In general, the prediction score would be generated by

Pstunting = 1/ (1 + exp (-Y)) (18)

Where: p is the probability, exp is the natural number, and ¥ is the logistic equation expressed as

Bo+ BXi+ oK+ iXi i which o is the constant, B and X are vectors of the parameter
and predictor variables respectively.

A logistic regression model utilizes a logit link function, which is used to transform the linear
predictor into a predicted probability for every category or value of the dependent variable, as
shown in the equation provided. The predicted response for each observation is determined by
selecting the response level with the highest predicted probability. If the probability is below 0.5,
the predicted response is assigned as O (not stunted). If the probability is 0.5 or higher, the
predicted response is assigned as 1 (indicating stunted) Equation 18 can be used to compute a
prediction probability of being stunted manually given the attributes of the child by using

equation 19 below.

1
P=
1+exp(—(ﬂ0 +,81X1 +,82X+-"+ﬂnxn)) (19)

2.10. Sample Size for Model Development and Validation
Determining the adequate sample size for model development and validation depends on various

factors, including the complexity of the problem, the available data, and the desired level of
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statistical significance. While there is no one-size-fits-all answer, literature has proposed at least
10 events per feature (EPP). Others have loosened up the 10 EPP rule to 5 EPP dependent on the
type of the model such as logistic or Cox regression ( Baeza-Delgado, et al., 2022)

CHAPTER3

METHODOLOGY
3.1. Application to data for predictors of child stunting

3.1.1. Data Sources

The data utilized in this research is derived from the 2015-16 Malawi Demographic and Health
Survey (MDHS), which is a survey conducted at a national level to ensure representativeness.
The MDHS collected up-to-date information on mothers’ demographics and health information
on child nutrition. The DHS, which was conducted by the National Statistics Office collected
anthropometric data for the under-five children in selected households. The analysis focused on a
dataset consisting of 5149 children who were included in the study due to their stunting outcome.
For more information on the sampling procedure of the DHS, one can refer to the 2015-16
MDHS report to obtain specific details (National Statistical Office, 2017).
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3.2. Variables

The potential predictors of stunting in this research were chosen according to existing research
studies about predictors or determinants of stunting that were conducted in Sub-Saharan Africa
and LMICs. The main predictors were categorized into demographic, economic, child-caring
practices, obstetric, and other maternal factors. The response variable of this study was stunting
and was calculated based on the anthropometric indicator (height-for-age) among under-five
children. The growth standards that were released by the World Health Organization in 2006
were employed to compute the height-for-age index of children (WHO, 2006). The height-for-
age index acts as an indicator for both stunted linear growth and the aggregate effects of growth
shortfalls in children. Stunting is characterized as a state in which children have a height-for-age
Z-score that is lower than two standard deviations (-2SD) from the median of the reference
population confirmed by the World Health Organization (Akombi, Agho, Astell-Burt, Hall, &
Renzaho, 2017). In this context, the z-score is determined by taking the difference between an
individual's height at a given age and the median height of the comparative population, and then
dividing it by the standard variations of the cited population at that exact age or height (WHO,
2006). The response variable was defined as a binary variable having the following levels,

category 1(stunted < -2SD) and category 0 (not stunted > -2SD).

3.3. Selection of Candidate Predictors

The systematic review produced 68 predictor variables of child stunting, of which 67 were
available from the 2016 MDHS dataset, and 27 had complete information. In this study, feature
selection techniques, including forward selection, backward elimination, and stepwise selection,
were employed. Additionally, the Least Absolute Shrinkage and Selection Operator (LASSO)
and random forest techniques were utilized to identify significant variables from the list obtained
from the MDHS-2015 dataset.
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3.3.1. Automated Variable Selection Method (Backward, forward, and stepwise)

The study used AIC as a selection criterion to select relevant variables in these automated
variable selection methods. A package called bootStepAlIC in R software was also used to avoid
overfitting.

3.3.2. LASSO (variable selection)

Furthermore, the LASSO binary logistic regression model was employed for variable selection.
Specifically, features with nonzero values of the coefficients were chosen. The LASSO model
utilized tenfold cross-validation with the smallest criteria to determine the best parameter
(lambda) selection. By drawing an upright line at the value determined through tenfold cross-
validation, the best lambda was identified, resulting in 22 variables with nonzero coefficients

selected.

3.4. Model Development

The data extracted from the 2015-16 MDHS were used to develop and train different types of
predictive models: Random Forest, LASSO regression and Logistic regression using different
automated variable selection methods. R (version 17) software was used to conduct analysis and
model development. The data was partitioned into a training set (80%) and a testing set (20%).
The partitioning was done in such a way that the training dataset (80%) and the testing dataset
(20%) had almost the same proportion of stunting. To ensure statistically significant outcomes
and representative characteristics of the entire dataset, the research allocated a 20% portion for
testing purposes, ensuring an adequate sample size. A training dataset of limited size can enlarge
the variance of the model's parameter estimates, while a small testing dataset can lead to
increased variance in the performance statistic of the model (Kohavi, 1995). Consequently, the
division of data into an 80/20 split aims to minimize both variance values, guaranteeing their
reduction to the lowest possible levels. To develop and refine the predictive models the study
used the training dataset. The testing dataset was utilized to gauge the model’s accuracy and
performance. The variables that were steadily learned to be substantial predictors of stunting in
the articles that were reviewed were also selected to form a set of variables. This set of variables

was determined by the researcher’s judgement. The selected predictors were then used to
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develop different binary logistic regression models to predict stunting. These models were

compared with each other for their discriminative ability and predictive performance.

CHAPTER4

RESULTS

4.1 Results

4.1.1. Dependent variable
A total of 4976 under-five children were included in the study (table 4.1). The prevalence of

stunting in the date set was 35%.
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Table 2. Dependent variable

Variable Frequency (n (%))
Stunting

not stunted 3205(64.41)
Stunted 1771(35.59)

4.1.2. Independent variables

Tables 3, 4 and 5 present the frequency distribution of potential predictors of stunting in this
research which were chosen according to existing research studies about predictors or
determinants of stunting that were conducted in Sub-Saharan Africa and LMICs. The main
predictors were classified into demographic, economic, child-caring practices, obstetric, and

other maternal factors.

Table 3. Demographic variable

Predictor Frequency (n (%))
Maternal age

<20 yrs 340(6.83)

20-34 yrs 3709(74.54)

>=35 yrs 927(18.63)
Residence

Rural 4172(83.84)

Urban 804(16.16)
Sex of household head

Female 1301(26.23)

Male 3671(73.77)
age of household head

<35 years 2740(55.06)

35+ years 2236(44.94)
sex of the child

Female 2542(51.09)

Male 2434(48.91)
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age of child(months)

0-6 months 488(9.81)
6-18 months 1160(23.31)
Above 18 months 3328(66.88)
Body mass index
<185 248(4.94)
18.5-24 3701(74.38)
>=25 1027(20.64)
Ethnicity
Chewa 1647(33.10)
Tumbuka 682(13.71)
Lomwe 1205(24.22)
Ngoni 594(11.94)
Yao 693(13.93)
Other 155(3.11)
Maternal education
No education 602(12.10)
Primary 3263(65.57)
Secondary and above 1111(22.33)
Region
Northern 883(17.75)
Central 1759(35.35)
Southern 2334(46.91)
Number of wunder5 children in the
household
<=1 child 2386(47.95)
>=2 children 2590(52.05)
Marital status
Single 157(3.16)
Ever married 4251(85.43)
Married 568(11.41)
Religion
Protestant 1224(24.60)
Catholic 778(15.64)
Muslim 700(14.07)
Other religion 2474(45.70)
Family size
Small 831(16.70)
Medium 2757(55.41)
Large 1388(27.89)

36




Table 4. Economic factors

wealth index
Poorest 1086(21.82)
Poorer 1114(22.39)
Middle 978(19.65)
Richer 930(18.69)
Richest 868(17.44)
Occupation of mother
Not working 1464(29.42)
Agricultural worker 2200(44.21)
Professional/technical/managerial 336(6.75)
Sales and services 262(5.27)
Domestic and unskilled manual 714(14.35)

Table 5. Obstetric, child morbidity and other maternal factors

Predictor Frequency (n (%))
birth weight

Low weight 870(17.48)

Normal weight 4106(82.52)
birth order number

First-born 1237(24.86)

2nd -4 2564(51.53)

5th or more 1175(23.61)
mode of delivery

Caesarean 308(6.19)

Normal birth 4668(93.81)
Diarrhea episodes

No 3937(79.12)

Yes 1039(20.88)
Anaemia level

Not anemic 3424(68.81)

Anaemic 1552(31.19)

preceding birth interval

no previous birth

2451(52.33)
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<24 months 301(6.43)

>24 months 1932(41.25)
Place of delivery

Home 376(7.56)

Facility 4600(92.44)
Type of birth

Singleton 4820(96.86)

Multiple 156(3.14)
Delivery assistance

Not health professional 390(7.84)

Health professional 4586(92.16)

Cough/fever
No 3471(69.75)
Yes 1505(30.25)

distance to a health facility

Short distance 2688(54.02)

Long distance 2288(45.98)

4.2. Variables Selected by Automated Variable Selection Method (Backward, forward, and
stepwise)
The variables selected by backward, stepwise, and forward feature selection methods are

presented in the table below.

Table 6. Variables selected by automated methods.

Backward Forward Stepwise

Age of child Age of child Age of child
Type of birth Birth weight Birth weight
Wealth index Type of birth Type of birth
Mother’s BMI Wealth index Wealth index
Mother’s education Mother’s BMI Mother’s BMI
Sex of the child Ethnicity Ethnicity

Number of under-five
children

Sex of the child

Sex of the child

Diarrhea

maternal occupation

maternal occupation

Distance to a hospital

Distance to a hospital

Distance to a hospital

Household size

Location

Location

Delivery assistance

Diarrhea

Diarrhea

Age of household head

Number of under-5
children

Number of under-5 children
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| Marital status | |

4.3. Variables Selected by Random Forest (Boruta)

Using Boruta, an algorithm designed specifically for random forests, 11 variables were selected
from the 27 identified variables. These selected variables were the type of birth, age of the child,
birth weight of the child, location, distance to facility, wealth index, birth order of the child, age
of household head, body mass index of the mother and household size. The Boruta variable
selection path is shown in Figure 1 below. The confirmed important variables are the ones in
green colour and those that are in red are the ones that are confirmed not to be important and in
blue are shadow attributes. Shadow attributes in Boruta refer to a set of randomized or shuffled
versions of the original attributes. These shadow attributes are created to serve as a benchmark

for assessing the true importance of the original attributes.
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Figure 1: Selected variables: Random Forest, Boruta

(birth_typ =birth type, age_childgrp=age of child, wealth_index = wealth index, brth_weightgrp = child birth
weight, location = location, dist_facility = distance to a health facility, birth_order = birth order, age_hhgrp = age
of household head, BMI _GRP = body mass index, fam_size = family size, agegrpl = mother’s age, place deliver =
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place of delivery, Numb_under5=number of under five children, meducation = mother’s education level,
del_assistance = delivery assistance, marital_status = marital status, child_sex = sex of child, sex_hh = sex of
household head, religion_cat = religion of mother, anemic_grp = anemia, mode_del = mode of delivery, occu_cat
= mother’s occupation, cough _fever = cough/fever)

4.4. Variables Selected by LASSO.

Twenty-two variables were selected by LASSO variable selection algorithm. These variables
included location, wealth index, maternal age, age of household head, age of the child, household
size, body mass index of the mother, distance to a health facility, number of under-5 children,
religion, maternal education, type of birth, birth order of the child, region, diarrhea, maternal

occupation, anaemia, delivery assistance, sex of the child, and sex of household head.

4.5. Variables Commonly Selected by All VVariable Selection Methods.
The research identified factors that were commonly selected by all feature selection algorithms.
These included the following: household wealth index, age of the child, household size, type of

birth (singleton/multiple births) and birth weight.

4.6. Variables Determined by Judgement.

Using the researcher’s judgement, ten variables were identified. The following were the factors
that were identified, age of the child, the weight of the child at birth, type of birth, sex of the
child, wealth index category of the household, number of under-five children in the household,

location, family size, episode of diarrhea and maternal education.

4.7. Development of Prediction Models
All potential variables selected using the different variable selection algorithms were applied to
develop different binary logistic regression models for predicting stunting. The models that

included the above features were fitted and tabulated as shown in Table 7. below.
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Table 7. Prediction factors for stunting

Prediction Models

intercept and variable Backward model Forward model Stepwise model Random forest LASSO model Judgement model
coeff p-value | coeff salue coeff galue coeff p-value | coeff \l:alue coeff p-value
Intercept -0.895 0.004 -0.802 0.009 -0.802 0.009 -0.698 0.010 -0.693 | 0.541 | -0.734 0.001
Wealth index
Poorest ref ref ref ref ref ref
Poorer -0.081 0.420 -0.084 0.407 -0.084 0.407 -0.117 0.244 -0.075 | 0.462 | -0.098 0.327
Middle -0.212 0.045 -0.210 0.046 -0.210 0.046 -0.245 0.019 -0.196 | 0.067 | -0.223 0.034
Richer -0.411 <0.001 -0.404 | <0.001 -0.404 <0.0(1) -0.464 <0.001 -0.382 | 0.001 | -0.419 <0.001
Richest -0.544 <0.001 -0.508 | <0.001 -0.508 <0.O(1) -0.626 <0.001 -0.458 | 0.002 | -0.552 <0.001
Sex of child
Male ref ref ref ref ref
Female -0.175 0.011 -0.178 0.010 -0.178 0.010 -0.169 | 0.015 | -0.178 0.009
Diarrhea
No ref ref ref ref ref
Yes 0.157 0.087 0.156 0.072 0.156 0.072 0.169 | 0.053 0.165 0.056
Age of household head
>35 years ref ref ref ref ref
35+ years -0.034 0.702 0.019 | 0.831
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Number of under-five
children

<=1 child ref ref ref ref ref
>=2 children 0.192 0.013 0.187 0.016 0.187 0.016 0.192 0.016 0.162 0.033
Age of child
0-6 months ref ref ref ref ref
6-18 months 0.486 0.001 0.489 0.001 0.489 0.001 0.532 | <0.001 0.488 | 0.001 0.492 0.001
<0.00 <0.00
Above 18 months 1.035 >0.001 1.041 <0.001 1.041 1 1.012 | <0.001 1.036 1 1.016 <0.001
Household size
Small ref ref ref ref ref
Medium 0.044 0.692 0.049 0.656 0.049 0.656 0.139 0.195 0.054 | 0.639 -0.024 0.813
Large -0.193 0.143 -0.186 0.159 -0.186 0.159 -0.063 0.631 -0.199 | 0.170 -0.205 0.083
Body mass index of the
mother
<18.5 ref ref ref ref ref
18.5-24 -0.250 0.105 -0.247 0.109 -0.247 0.109 -0.233 0.128 -0.247 | 0.111
>=25 -0.499 0.004 -0.489 0.004 -0.489 0.004 -0.496 0.004 -0.498 | 0.004
Distance to health a
facility
Long distance ref ref ref ref ref
Short distance 0.156 0.032 0.160 0.028 0.160 0.028 0.137 0.057 0.175 0.017
Delivery assistance
Health personnel ref ref ref ref ref
Not health
personnel 0.142 | 0.264
Type of birth
Singleton ref ref ref ref ref
<0.00 <0.00
Multiple 1.009 <0.001 1.029 <0.001 1.029 1 1.073 <0.001 1.055 1 1.015 <0.001
Maternal education
No education ref ref ref ref ref
Primary -0.162 0.139 -0.171 0.099
Secondary and
above -0.237 | 0.093 -0.279 0.034
Birth weight of the
child
Low birth weight ref ref ref ref ref
<0.00 <0.00
Normal birth weight -0.552 <0.001 -0.557 <0.001 -0.557 1 -0.524 <0.001 -0.546 1 -0.554 <0.001
Location
Urban ref ref ref ref ref
Rural 0.268 0.026 0.231 0.057 0.231 0.057 0.238 0.042
Mother’s occupation
Not working ref ref ref ref ref
Agricultural
worker 0.028 0.740 0.028 0.740 0.013 0.881
roof/technical/manageri
al 0.192 0.222 0.192 0.222 -0.187 | 0.240
Sales and services -0.384 0.032 -0.384 0.032 -0.373 0.038
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Domestic and
unskilled 0.069 0.533 0.069 0.533 0.054 | 0.631
Ethnicity
Chewa ref ref ref ref ref
Tumbuka 0.043 0.795 0.048 0.769 0.048 0.769 0.034 | 0.836
Lomwe -0.340 0.005 -0.340 0.005 -0.340 0.005 -0.351 | 0.004
Ngoni 0.027 0.817 0.035 0.766 0.035 0.766 0.031 | 0.791
Yao -0.179 0.152 -0.177 0.157 -0.177 0.157 -0.168 | 0.295
Other 0.188 0.429 0.179 0.454 0.179 0.454 0.144 | 0.549
Birth order
First-born ref ref ref ref ref
2nd-4th -0.210 0.021 -0.211 0.022 -0.211 0.022 -0.208 0.033 -0.221 | 0.026
5t or above 0.053 0.633 0.050 0.660 0.050 0.660 0.009 0.949 -0.030 | 0.833
Region
North ref ref ref ref ref
Central 0.235 0.135 0.209 0.187 0.209 0.187 0.175 | 0.274
South 0.320 0.054 0.295 0.075 0.295 0.075 0.265 | 0.114
Sex of household head
Male ref
Female 0.032 | 0.696
Anaemia
Not anaemic ref
Anaemic -0.051 | 0.501
Religion
Protestant | ref
Catholic 0.228 | 0.045
Muslim 0.005 | 0.974
Other 0.015 | 0.870
Maternal age
>20 years ref
20-34 years -0.013 0.934 -0.021 | 0.895
35-39 years 0.038 0.845 0.029 | 0.884

Table 8. Prediction factors (factors identified by all variable selection methods) for
stunting.

intercept and variable common variable model

coefficient p-value
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Intercept -0.705 0.004
Wealth index
Poorest ref
Poorer -0.127 0.201
Middle -0.261 0.012
Richer -0.522 <0.001
Richest -0.808 <0.001
Age of child
0-6 months ref
6-18 months 0.547 <0.001
Above 18 months 1.012 <0.001
Household size
Small ref
Medium 0.061 0.521
Large -0.071 0.507
Type of birth
Singleton
Multiple 1.068 <0.001
Birth weight of the child
Low birth weight ref
Normal birth weight -0.540 <0.001

4.8. Variable Importance

To help understand the results of the developed models, like in any other machine learning
models, variable importance measures were computed. The graphs below present the overall
variable importance of the models fitted using variables selected by the different variable

selection methods.
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4.8.1. Variable Importance for the Backward Model

As indicated in Figure 2, the age of a child has the largest contribution to the model seconded by
the birth weight of the child. The type of birth, wealth index, ethnicity, body mass index of the
mother, sex of the child, number of under-five children, birth order, and location are among the

top ten important variables selected via the backward elimination method.

fa) (b) (d
age of child(above 18 monts) age of child[above 18 monts) age of child(above 18 monts)
infant birth weight infant birth weight (2) infant birth weight (2)
type of birth type of birth type of birth
wealth index (richest) wealth index [richest) wealth index [richest]
% wealth index (richer) % wealthindex [richer) % wealth index [richer)
E age of child (6-8 months) E age of child (6-8 months} E age of child (6-8 months)
sex of child body mass index [18.5-24} body mass index (18.5-24)
Number of under5 children ethnicity (Lomwe] ethnicity (Lomwe)
wealth index (middle) sexof child sex of child
mother education level (Primary) Number of underS children Number of under5 children

0o 2 4 5 8 ) : ] 3 ‘

Importance Importance Importance

Figure 2 Overall variable importance for top 10 variables: (A) are variables selected by the

backward algorithm, (B) variables selected by the forward algorithm and (C) variables

selected by the stepwise algorithm.
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Figure 3: Overall variable importance for top 10 variables: (D) are variables selected by
the LASSO algorithm, (E) variables selected by Random Forest algorithm and (F)
variables selected by judgement.
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4.8.2. Variable Importance for the Forward Model

Figure 2 (B) presents and ranks the variables that were selected using the forward variable
selection algorithm. Like in backward variable selection the age of the child, birth weight, type
of birth, wealth index, ethnicity, body mass index, sex of the child, number of under-five

children, birth order and distance to health facility are the top ten important predictors.

4.8.3 Variable Importance for the Stepwise Model

The variables selected using the stepwise algorithm are identical to those selected via the forward
variable selection algorithm. The graph in Figure 2 (C) ranks, the age of the child, birth weight,
type of birth, wealth index, ethnicity, body mass index, sex of the child, number of under-five

children, birth order and distance to a health facility as the top ten important predictors.

4.8.4. Variable Importance for the LASSO

The largest number of predictors were selected using LASSO variable selection algorithm.
Twenty predictors were selected and using variable importance measures, the rankings are as
presented in the graph, Figure 3 (E). As indicated in this graph the best three variables are the
age of the child, birth weight and type of birth just like the other algorithms above.

4.8.5. Variable Importance for the Random Forest

Using the predictors selected by the random forest-based algorithm, Figure 3 (D), the ranking of
variable importance measures is not very different from the rankings obtained in the other
algorithms. The age of the child, birth weight of the child and type of birth are still ranked as the
top three in terms of contribution to the predictive model. The Boruta algorithm has selected the
fewest number of predictors, ten compared to the other algorithms.

4.8.6. Variable Importance for the Judgement Model

Another model was fitted using variables selected using the researcher’s judgement. Ten
predictors were incorporated into the model and were chosen based on how many articles among
those that were reviewed identified them as statistically significant predictors of stunting.

Importance scores of the variables were computed and presented in the graph, Figure 3 (F).
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4.9. Model Evaluation and Performance

The models were constructed using the selected predictors of stunting which were selected using
backward elimination, forward selection, stepwise selection, random forest-based algorithm
(Boruta), LASSO variable selection algorithm and judgment selection method. To further
investigate the performance of the models obtained from different sets of variables, the study
estimated cut-off points using the SpEqualSe method implemented in the OptimalCutpoins
package in R. The cutoff points were estimated using the training data set. The analysis used the
estimated cutoff points on the fitted logistic regression models to the test set and obtained several
performance measures with each estimated cutoff point. Most often a default cut point of 0.5 is
used in research studies ( (Hasegawa, Ito, & Yamauchi, 2017); ( Mukuku, et al., 2019); (van den
Brink, et al., 2020)). For comparison purposes, the study also includes results obtained from
using the cutoff point of 0.5 from the Bayes rule, see Table 9.

Table 9. Summary of probability score from the selected model (Judgement model).

Mean Median Range

0.36 0.35 0.74

Table 10. Model performance measures using a cut-off point of 0.5 on test data.

Cut Sensitivit

- AUC (95% CI) Specificit  Misclassificatio ~ Accurac
point y y n error y
Model 1 0.5 0.63(0.59-0.66) 0.34 0.81 0.35 0.65
Model 2 0.5 0.59(0.56 -0.63) 0.27 0.83 0.37 0.64
Model 3 0.5 0.59(0.56 -0.63) 0.27 0.83 0.37 0.64
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Model 4 0.5 0.57(0.53-0.61) 0.25 0.80 0.39 0.61

Model 5 0.5 0.62(0.59-0.66) 0.18 0.91 0.34 0.66
Model 6 0.5  0.64(0.60-0.67) 0.17 0.93 0.33 0.67
Model 7 0.5 0.63(0.59-0.66) 0.15 0.93 0.34 0.66

Model 1 was constructed using the variables selected by backward variable selection algorithms. Model 2 was constructed using
the variables selected by forward variable selection algorithms. Model 3 was constructed using the variables selected by stepwise
variable selection algorithms. Model 4 was constructed using the variables selected by random forest variable selection
algorithms. Model 5 was constructed using the variables selected by LASSO variable selection algorithms. Model 6 was
constructed using the variables selected by judgement. Model 7 was constructed using the variables that were common to the 6
models.

In the study, the performance estimates based on the cutoff point of 0.5 do well in terms of
specificity, but all have poor sensitivity (Table 10.). The estimated cutoff points for each model
seek an equilibrium between sensitivity and specificity. This is important because in this study
the researchers were more interested in detecting a stunted child than finding a non-stunted child.

Hence more attention is paid to sensitivity than specificity.

Training a model is the first step in making good predictions, however identifying how well the
predictive power is, is a different question. To conclude if our trained model has good predictive
power, the research simply used the trained model and predicted the response for the test data.
These predictions were then used to compare with the true response variable. As expected, the
models generally performed well when tested against the training dataset, simply because the
error is underestimated by using the data that the model has seen as depicted in Appendix 1. The
model fitted using the variables selected by the LASSO method has a better performance
compared to other models, AUC of 67% (95% CI: 65-69). However, the true performance of the
selected models was eventually determined by using the data (test data) that the trained model
had not seen. The ROC curves were obtained by sensitivity versus the 1-specificity. The AUC

results using the testing data set are tabulated in Table 11. Below

Table 11. Model performance measures using estimated cutoff points on test data.

Misclassificatio

Cutpoint  AUC (95% CI) Sensitivity Specificity 1 error Accuracy
Model 1 0.36 0.63(0.59-0.66) 0.68 (0.62 - 0.73) 0.48 (0.44 - 0.52) 0.45 0.55
Model 2 0.36 0.59(0.56 -0.63) 0.66 (0.60 - 0.71) 0.48 (0.44 - 0.51) 0.46 0.54
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Model 3 0.36  0.59(0.56 -0.63) 0.66 (0.60-0.71)  0.48 (0.44 - 0.51) 0.46 0.54
Model 4 0.37 0.57(0.53 -0.61) 0.68 (0.62-0.73)  0.45(0.41-0.48) 0.48 0.53
Model 5 0.37 0.62(0.59-0.66) 0.52 (0.47- 0.58) 0.64 (0.60 - 0.68) 0.4 0.6
Model 6 0.37 0.64(0.60-0.67) 0.61(0.56-0.66)  0.60 (0.56 - 0.63) 0.4 0.6
Model 7 0.37  0.63(0.59-0.66) 0.63(0.58-0.68)  0.55-(0.51- 0.59) 0.42 0.58

Model 1 was constructed using the variables selected by backward variable selection algorithms. Model 2 was
constructed using the variables selected by forward variable selection algorithms. Model 3 was constructed using the
variables selected by stepwise variable selection algorithms. Model 4 was constructed using the variables selected by
random forest variable selection algorithms. Model 5 was constructed using the variables selected by LASSO variable
selection algorithms. Model 6 was constructed using the variables selected by judgement. Model 7 was constructed using

the variables that were common to the 6 models.

From Table 11. above, the logistic model from each set of selected variables yields quite similar
performance. Nevertheless, the final model is the one with the largest AUC or C-statistic, which
is the model fitted using a set of variables determined by the judgement method with an AUC of
64% (95% CI: 60-67%), the accuracy of 60% and sensitivity of 61% and specificity of 60%. The
sensitivity and specificity indicate that 61% of the children who had a stunting condition and
60% of the children who did not have a stunting condition were correctly classified by the
model. The confusion matrix for the best model is presented in Table 12 below.

Table 12. Confusion Matrix indicate the performance of the best model at the selected
probability cut point.

Predicted
Not stunted Stunted All
Not stunted 385 261 646
Actial 1 g inted 132 208 340
All 517 469 986

The Confusion matrix indicates the performance of a classifier on stunted children and those who
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are not stunted. The confusion matrix depends on the choice of the probability cutoff point. The
research used the best-selected probability cutoff point of 0.37. The model is slightly better at

predicting stunted class with a recall value of 0.61.

Table 13. Performance of the selected model after adjusting for sex and residence

Sex of a child Residence
Female Male Urban Rural
ggo(/i on 0.64 (0.59-0.70)  0.63 (0.58 -0.68) 0.67(0.58-0.76) 0.63 (0.59 - 0.67)
2,2r)‘SitiVity 0.86 0.79 0.62 0.7
22‘;0”“3“3’ 0.26 0.27 0.59 0.45

The model based on risk factors determined by judgement has shown to be a predictive tool that
displays a good ability to discriminate between stunted children and non-stunted children,
particularly in children dwelling in urban areas (AUC=67% (95% CI. 58-76% in children
dwelling in urban versus AUC=63% (95% CI: 59-67 in children dwelling in rural areas).
Accordingly, children dwelling in urban areas, with a probability value higher than or equal to
0.37 were identified as stunted. Using this cut-off point, 62% of children residing in urban areas
who were stunted and 59% of children residing in urban locations who were not stunted, were
correctly classified. There is a small difference in the model’s capacity to classify between
stunted children and non-stunted children when gender was considered (AUC=64% (95% CI: 59-
70%) in female children versus (AUC=63% (95% CI:58-68%) in male children.

The findings of this study show that the six prediction models have a better discrimination ability

compared to a random classifier as indicated by the ROC curves in Figure 4. below.
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comparison of ROC curves
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Figure 4. Comparing discrimination of the models fitted using variables selected by the
different methods.

CHAPTERS

DISCUSSION, CONCLUSION AND RECOMMENDATIONS

5.1. Discussion

The primary objective of the study was to create and validate a child stunting prediction score
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based on the best predictive model in Malawi. A child stunting prediction score may help
decision-makers implement tailor-made interventions to help in achieving a reduction of stunting
in Malawi. It was based on predictor variables obtained from fitting a multivariate logistic
regression model to child stunting applying data obtained from the 2015-16 MDHS. Using six
variable selection methods, namely backward, forward, stepwise, random forest, LASSO, and
judgment, the study identified nine easily measured key predictors of child stunting. These
included the age of the child, the weight of the child at birth, type of birth, sex of the child,
wealth index category of the household, number of under-five children in the household,
location, and maternal education. The best predictive model was based on risk factors
determined by judgment methods, which had AUROC of 65% (95% CI: 64%-67%) and 64%
(95% CI: 60%-67%) in the training data set and the testing data set, respectively. Based on the
common risk factors, identified by all the feature selection algorithms, the predictive ability was
62% (95% CI: 59.0%-66.0%). For children residing in urban areas, the AUROC was 67% (95%
Cl: 58-76%) while for the children living in rural areas, AUROC was 63% (95% CI: 59-67).

Although many studies have identified determinants of stunting, a sparse number of studies have
focused on the explicit creation and evaluation of risk prediction models designed to detect
children at a high risk of stunting. One such study was carried out by Hasegawa et Al., 2017, in
Zambia. The predictive tool that the study developed was aimed at predicting malnourishment in
young children. It used maternal age, weight-for-age z-score status, birth weight, feeding status,
history of sibling death, multiple births, and maternal education level as important predictors.
However, their study differs from this study in that the tool was developed using data collected
from one health facility in rural location which limits its generalizability. The Lives Saved Tool
has been in use to approximate the influence of specific modifications in important interventions
on the decrease of stunting in children less than five years old. Many interventions that influence
stunting, both directly and indirectly, have been identified by this tool. Zinc supplementation,
education on suitable complementary feeding, and giving supplementary food are some of the
interventions that are included in this tool ( Hanieh, et al., 2019). Nevertheless, this study’s
predictive model distinguishes itself from the Lives Saved Tool by its inability to predict which
children are likely to be stunted. In the investigation implemented by Hanieh et al. (2019), they
constructed and outwardly verified a predictive model to forecast the hazard of stunting when

preschool children reach 3 years of age. Their final model contained very important predictors,
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which consisted of the height of both the father and mother, the weekly weight gain of the
mother during pregnancy, the sex of the infant, the gestational age at birth, as well as the weight
and length of the infant at 6 months of age. This study differed in the sense that the model was
specifically developed and validated within a rural context, excluding urban areas and other
regions. In addition, the model had limitations in predicting all children who were vulnerable to

stunting, thereby constraining its utility among children aged over 3 years.

The method of choosing the probability cut points influences the predictive ability of the model.
The cost of wrongly classifying those that have the disease (false negative) and those that do not
have the disease (false positive) has informed the choice of the appropriate method of choosing
the cut points for the classifier’s scores (Ferri, Orallo, & Flach, 2019). Sometimes it is important
to choose a method that gives high sensitivity and specificity ( Bewick, Cheek, & Ball, 2004).
During the selection of probability thresholds, a trade-off is made between the false positive rate
(FPR) and the false negative rate (FNR). This is perceived as the objective function of the model,
wherein the target is to reduce the number of errors, or the cost incurred. In general, there is a
tradeoff between specificity and sensitivity, and a decision must be made based on their relative
importance ( Bewick, Cheek, & Ball, 2004). The method of selecting the cut points must take
this into account. It is important to evaluate the efficiency of a model at different cut points but
assessing the model at its optimal cut point is also desirable. The ROC curves presented in
Figure 4.4 demonstrate the tradeoff between the two measures at various cut points in this study.
The metrics were calculated for assessing the performance of the predictive model using cut-
points derived based on the SpEqualSe method implemented in the OptimalCutpoins package
in R. This method hinges on the principles of balancing sensitivity and specificity with the
assumption that the expenses associated with false positives and false negatives are of equal
value. This is one of the data-driven methods of choosing optimal cut points and their use in
studies with small sample sizes may identify accurate optimal cut points and overstate accuracy
estimates ( Bhandari, et al., 2021). However, this study used a big sample size which might have
avoided what Bhandari observed. There are other data-driven methods of selecting cut points that
can also be used in choosing the optimal thresholds such as the Youden’s Index (J) (Lai, Tian, &
Schisterman). Xu et al.,2019 used Youden’s Index to decide the thresholds for predicting AKI in
their model. The Youden’s Index (J) is defined as the sum of Sensitivity and Specificity minus

one (Jc = SE¢ + SPc- 1). The method (SpEqualSe) used in this study does not differ from
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Youden’s Index since both use criteria built on sensitivity and specificity measures ( LOpez-
Raton, Rodriguez-Alvarez, Cadarso-Suarez, & Gude-Sampedro, 2014). Incorporating
predetermined cut points, when accessible, would enhance the credibility of a classification
model (Ewald, 2006). These pre-specified cut points are the ones that are predetermined by using

previous studies.

There were certain limitations in the study that are worth mentioning and discussing. To begin
with, the study encountered missing values for certain potential predictors, including nutritional
variables, which could introduce selection bias. In addition, the study did not consider the
clustering and weighting of the DHS data, which may have affected the estimated probabilities
of being stunted by not being representative. The data used for score development and validation
were exclusively obtained from Malawi, which may potentially restrict the generalizability of the
risk score to other regions within Sub-Saharan Africa (SSA). This study did not consider LARS
due to the unavailability of the software package in R to implement it as a variable selection
method for nonlinear models. Another limitation is that the study assumed that a logistic link
function will provide a better predictive model. Alternatively, a probit link function or
complementary log-log link function could have been employed. The method of selecting the
probability cut points that were used in the study is also another limitation. There are other

robust approaches for selecting decision boundaries that could have been used.

The effectiveness of this study’s approach is rooted in the fact that using nationally
representative data (MDHS), the study investigated an extensive array of potential predictors and
successfully identified a concise collection of major variables. These variables are commonly
assessed in primary healthcare settings in humerous countries or can be readily obtained. Even
though factors affecting stunting that have been reported in the literature vary by many attributes
such as type of study, region and sample size, and the ones mentioned above, considerable key
findings have surfaced that offer support for the predictive variables that the model has
identified. However, this might have affected the derived scores since some variables were not
captured in MDHS and some had missing values and as such, they were not used in developing
the predictive model.

The discriminative ability of this study’s model seems to be different depending on other
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characteristics such as the residence type of the child. The change in the performance of the
model between urban and rural populations is largely due to differences in sample sizes of these

two categories in the data set.

The study proposes a similar research area but uses simulated data with sensitivity analysis to
improve the predictive ability. Future investigations should also strive to replicate the findings of
this study by employing alternative machine learning algorithms for binary classification. There

is also a need to explore other variable selection methods such as LARS.

5.2. Conclusions

Though the various selected predictors and models had an unsatisfactory performance at
distinguishing between stunted and non-stunted children, this work has shown the potential of
using a tool that combines purported child stunting predictors. The study’s approach offers a
direct estimate of child stunting using a single summary measure, rather than working with

multiple predictors of child stunting.

The findings of the systematic review have shown that determinants of stunting are multifaceted
and interdependent. The study has identified many predictors of stunting, but the dominant ones
are the weight of the child at birth, type of birth, sex of the child, wealth index category of the
household, number of under-five children in the household, location, maternal education, family

size, diarrhea, birth order, distance to facility and body mass index.

The prediction model shows that the predictors of stunting for children are the weight of the
child at birth, type of birth, sex of the child, wealth index category of the household, number of
under-five children in the household, location, and maternal education. The precision of the
scoring system in predicting the likelihood of children under the age of five experiencing
stunting in Malawi was 60% with a sensitivity of 61%, specificity of 60% and AUC of 64%
(95% CI: 60-67%). Stunting cases occur usually because this disease is not recognized by the
public at an early stage. The research has developed a prediction model that has the possibility of
helping in understanding what may influence child stunting and may help policymakers to focus
on evidence-based interventions that target specific predictors in low-resource countries. The

researchers believe that the predictive model will empower public health practitioners at the
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community level or in hospitals to quickly measure the projected subsequent likelihood of
stunting in under-five children. By employing early protective measures during the critical
developmental stage of the first five years of life, there is a chance to intervene and alter the
growth path before it becomes irreversible. This approach permits timely action within the

optimal window of opportunity, where the most significant impact is expected to be attained.

5.3 Recommendations

The risk predictive model for child stunting is recommended for children aged 0-59 years in
Malawi and similar settings in sub-Saharan Africa. It is necessary to embrace a comprehensive
community-oriented strategy that addresses the instantaneous and fundamental factors
contributing to child malnutrition. This strategy should encompass counselling phases for
mothers to enhance infant feeding behaviours and maternal dietary intake as well as health
promotion initiatives to raise awareness about the significance of appropriate public health

measures for cleanliness and hygiene.
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APPENDICES

Appendix 1: Model performance measures using estimated cutoff points on the training set.

Misclassification

Cut point AUC (95% CI) Sensitivity Specificity error Predictive
value
Model 1 0.36 0.66(0.64-0.68) 0.62 0.62 0.39 0.61
Model 2 0.36 0.66(0.65-0.68) 0.62 0.62 0.38 0.62
Model 3 0.36 0.66(0.65-0.68) 0.62 0.62 0.38 0.62
Model 4 0.37 0.65(0.64-0.67) 0.61 0.61 0.39 0.61
Model 5 0.37 0.67(0.65-0.69) 0.63 0.63 0.37 0.63
Model 6 0.37 0.65(0.64-0.67) 0.61 0.60 0.39 0.61
Model 7 0.37 0.64(0.62-0.66) 0.6 0.61 0.39 0.61

Model 1 was constructed using the variables selected by backward variable selection algorithms. Model 2 was
constructed using the variables selected by forward variable selection algorithms. Model 3 was constructed using the
variables selected by stepwise variable selection algorithms. Model 4 was constructed using the variables selected by
random forest variable selection algorithms. Model 5 was constructed using the variables selected by LASSO variable

selection algorithms. Model 6 was constructed using the variables selected by judgement. Model 7 was constructed using

the variables that were common to the 6 models.

63



Appendix 2: Analysis: Stata commands (Data cleaning)

clear all

cd c:\thesis

set more off

cap log close

log using thesis res2.log, append

use "C:\Users\Jonathan Mkungudza\Documents\MASTERS BIOSTATISTICS updated\MDHS DATA\MWKR7ADT\MWK

> R7AFL.DTA"

*x*stunting***

recode hw70 (min/-200=1 "stunted")
drop if stunting==.

***mother's age ***

rename v012 age women

recode age_women (0/19=1 ">20
generate (agegrpl)

tab agegrpl,m

***sex of the child***

rename b4 child sex

tab child sex

***sex of household head ***
rename v151 sex hh

tab sex_hh

**kregion* **
tab v024

rename v024 region

***location***
tab v025

rename v025 location

***3ge of household head (v152)***
gen age_ HH2=v152

replace age HH2=999 if v152==98
replace age HH2=. if age HH2==999
recode age HH2 (0/34=1 ">35 yrs")

tab age hhgrp,m

***Number of underfive children

rename v137 childnumb undb

recode childnumb und5 (0/1=1 "<=1 children")

tab Numb under5,m

(-200/9990=0

yrs")

(20/34=2

(2/max=2
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"not stunetd")

"20-34 yrs'")

">=2 children"),

(else=.), gen(stunting)

(35/49 =3 "35-39

(35/max=2 "35+ yrs"), generate(age hhgrp)

generate (Numb_underb5)

yrs"),



*** mode of delivery***
rename ml7 mode del

tab mode del,m

***ywealth index***
rename v190 wealth index

tabl wealth index,m

***Ethnicity***

gen ethnicity=v131

replace ethnicity=1 if ethnicity==1 |ethnicity==10
replace ethnicity=2 if ethnicity==2 |ethnicity==4 |ethnicity==
replace ethnicity=3 if ethnicity==3 |ethnicity==9 |ethnicity==

replace ethnicity=4 if ethnicity==

replace ethnicity=6 if ethnicity==96

label define ethnicity 1"Chewa" 2"Tumbuka" 3"Lomwe" 4"Ngoni" 5"Yao" 6"other"
label values ethnicity ethnicity

tab ethnicity,m

***Diarrhea

rename hll diarrhea

replace diarrhea=. if diarrhea==
replace diarrhea=1 if diarrhea==

tab diarrhea,m

***Number of ANC Visits**x*

gen ANCvisit= ml4

replace ANCvisit=. if ml4==98

recode ANCvisit (0/3=1 "<= 3") (4/max=2 "4 above"),gen (ANC_VISGRP)

tab ANC VISGRP,m ///Jonathan: thinking of excluding this from analysis since 1045 participants

have missing records

***Child age in months***

rename bl9 curr agemonth

recode curr_agemonth (0/5=1 "0-6 months") (6/18=2 "6-18 months") (19/max=4 "above 18 months"),gen
(age_childgrp)

tab age childgrp,m

***Family size**x*
rename v136 hh meb nu
recode hh meb nu (0/3=1 "small") (4/6=2 "medium") (7/max=3 "large"),gen (fam size)

tab fam size,m

***Body mass index***
gen BM index=v445/100
recode BM index (0/18.49=1 "<18.5") (18.5/24.99=2 "18.5-24") (25/max=3 ">=25") ,gen (BMI_GRP)
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tab BMI_GRP,m

***marital status***
gen mar_status=v501
recode mar status (0=0 "single") (1/2=1 "married") (3 4 5 =2 "ever married"), gen(marital status)

tab marital status,m

***place of delivery***

rename ml5 del place

recode del place(11/12 96 =1 "home") (21 22 23 26 31 32 33 34=0 "health facility"), gen
(place deliver)

label var place deliver "place of delivery"

tab place deliver,m

***distance to health facility***

recode v467d (1=1 "long distance") (2=2 "short distance"), gen(dist facility)
label var dist facility "distance to a health facility"

tab dist facility,m

***delivery assistance***

gen del assistance=.

replace del assistance=1 if m3a==1 |m3b==1|m3h ==

replace del assistance=2 if m3g ==1|m3i ==1|m3k ==1|m3n ==

label define del assistance 1"health personnel"™ 2"not health personnel”
label values del assistance del assistance

tab del assistance,m

***pbirth number***
recode b0 (0=0 "singleton" ) (1 2 3=1 "multiple"),gen(birth typ)
tab birth typ,m

***Birth order***
recode bord (1/1=1 "first born") (2/4=2 "2nd-4th") (5/max=3 "5th or above"),gen (birth order)
tab birth order

***education of the mother***
recode v106 (0=0 "No education") (1=1 "Primary") (2 3=2 "Secondary and above"),gen (meducation)

tab meducation,m

***Mother's religion***

gen religion cat=v130

replace religion cat=1 if v130==2 | v130==3 |v130==
replace religion cat=2 if v130==

replace religion cat=3 if v130==

replace religion cat=4 if v130==

replace religion cat=. if v130==7 |v130==96

label define religion cat 1"Protestant" 2"catholic" 3"muslim" 4"other"
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label values religion cat religion cat

tab religion cat,m

*** /pbirthweight***
gen brth weight=ml9
replace brth weight=. if ml19==9996 | ml19==9998

recode brth weight (0/2499=1 "Low birth") (2500/max=2 "Normal birth"),gen (brth weightgrp)

replace brth weightgrp=2 if ml8==1 | ml8==2 |ml8==3 & brth weight==.

replace brth weightgrp=1 if ml8==4 | ml8==5 & brth weight==.

tab brth weightgrp

gen cough fever=.

replace cough fever=0 if h31==0 |h22==
replace cough fever=1 if h31l==1 |h22==
label define cough fever 0"No" 1"Yes"
label values cough fever cough fever

tab cough_fever,m

*** Mother’s occupation***

recode v717 (0=0 "Not working") (4
"Proff/technical/managerial™) (3 7=3 "Sales and
gen (occu_cat)

tab occu cat,m

***child's anemia level***
recode v457 (4=0 "Not anemic") (1 2 3=1 "Anemic"),

tab anemic grp,m

drop if anemic grp==.
drop if brth weightgrp==.
drop if cough fever==.
drop if religion cat==.
drop if BMI_ GRP==.

drop if diarrhea==.

drop if mode del==.

drop if age_hhgrp==.

tab anemic grp,m

tab brth weightgrp,m
tab cough_ fever,m
tab religion cat,m
tab BMI_GRP,m

tab diarrhea,m

tab mode del,m

tab age_hhgrp,m
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5=1 "Agricultural worker")
services") (6 9=4 "Domestic and
gen (anemic_grp)

(1 8=2
unskilled"),



keep stunting agegrpl region ANC VISGRP sex hh age hhgrp child sex age childgrp BMI GRP
ethnicity meducation location Numb_under5 marital status fam size occu_cat brth weightgrp
mode del diarrhea anemic grp place deliver birth typ cough fever dist facility

wealth index del assistance religion cat birth order

tabl stunting agegrpl region ANC VISGRP sex_hh age hhgrp child sex age_childgrp BMI GRP
ethnicity meducation location Numb_under5 marital status fam size occu_cat brth weightgrp
mode del diarrhea anemic grp place deliver birth typ cough fever dist facility

wealth index del assistance religion cat birth order,m

save "C:\Users\jmkungudza\Documents\MASTERS BIOSTATISTICS updated\DATA\prediction\data.dta"
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Appendix 2: R Script (Model training and Evaluation)

setwd ("~/MASTERS BIOSTATISTICS updated/DATA/prediction")
data <- read.csv("~/MASTERS BIOSTATISTICS updated/DATA/prediction/Mydata.csv")

data$stunting<-factor (data$stunting,level=c(0,1),labels=c("not stunted", "stunted"))

dataSwealth index<-as.factor(data$wealth index)
data$child sex<-as.factor (dataSchild sex)
data$diarrhea<-as.factor (data$diarrhea)

data$Numb_ under5<-as.factor (data$Numb under5)
data$age childgrp<-as.factor(data$age childgrp)
dataSfam size<-as.factor (data$fam size)
data$BMI_GRP<-as.factor (data$BMI_GRP)

data$marital status<-as.factor(dataSmarital status)
data$dist facility<-as.factor (data$dist facility)
data$del assistance<-as.factor(data$del assistance)
data$birth typ<-as.factor(data$birth typ)
data$meducation<-as.factor (data$meducation)
data$location<-as.factor (data$location)

data$ethnicity<-as.factor (data$ethnicity)

data$agegrpl<-as.factor (data$agegrpl)
dataSmode del<-as.factor (data$mode del)

dataSage hhgrp<-as.factor (dataSage hhgrp)
dataSplace deliver<-as.factor (data$place deliver)

dataS$birth order<-as.factor (dataSbirth order)

dataSreligion cat<-as.factor(data$religion cat)
dataS$brth weightgrp<-as.factor (dataSbrth weightgrp)
data$cough fever<-as.factor (dataScough fever)
dataSoccu cat<-as.factor (dataSoccu cat)

dataS$anemic grp<-as.factor (dataSanemic grp)

data$region<-as.factor (data$region)

set.seed (123)
ind<-sample (2, nrow(data), replace=T, prob=c(0.8,0.2))

traindata<-data [ind==1, ]
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testdata<-data [ind==2, ]

str (data)

#Required packages

install.packages ("InformationvValue")
install.packages ("pROC")
install.packages ("ggpubr")
install.packages ("OptimalCutpoints")
install.packages ("dplyr")

library ("dplyr")

library ("OptimalCutpoints")

library (MASS)

library (pROC)

library (ROCR)

library (caret)
library(Informationvalue)

library (bootStepAIC)

library (Boruta)

library (randomForest)

library (glmnet)

library(ggplot2)

library (ggpubr)

table (traindata$stunting)
table (testdata$stunting)
table (data$stunting)

prop.test (x=1771,n=4976)
prop.test (x=1431, n=3990)
prop.test (x=340, n=986)

#Backward variable selection method
model All<-glm(stunting ~.,data=traindata, family="binomial")
mod step<-stepAIC(model All,direction="backward", trace=FALSE)

mod_step

model boot<-boot.stepAIC(model All,traindata,B=50)
model boot

#Forward variable selection method
fitAll<-glm(stunting~.,data=traindata, family="binomial")

model intecept<-glm(stunting~1l,data=traindata, family="binomial")
summary (model intecept)

mod_stepFo<-stepAIC(model intecept,direction="forward",scope=formula (fitAll))
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summary (mod_stepFo)

#stepwise variable selection method
mod stepwise<-stepAIC(model intecept,direction="both",scope=formula (fitAll))

summary (mod stepwise)

#Boruta:Random forest variable selection
boruta <-Boruta (stunting~.,data=traindata,doTrace=2,maxRuns=500)
print (boruta)

plot (boruta,las=2,cex.axis=0.7)

#getting selected variables

getNonRejectedFormula (boruta)

# 5) Training LASSO model
train x<-model.matrix(stunting~ .,data=traindata)[, -8]

train y<-traindata[, "stunting"]

test x<-model.matrix(stunting~ .,data=testdata) [, -8]

test y<-testdatal[,"stunting"]

#adjust x,y size of plot
options (repr.plot.width=10, repr.plot.height=8)
mod lasso<-glmnet (

x=train_x,

y=train_ y,

family="binomial",

alpha=1

#CROSS VALIDATION

set.seed (2345)

mod lasso_cv<-cv.glmnet (
x=train_x,
y=train y,
type.measure="class",
family="binomial™,

alpha=1

#plot results of cv
par (mfrow=c(1,2))

plot (mod lasso_cv, main="Misclsification error curve")
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plot (mod lasso, xvar="lambda", main="LASSO coefficient profile")

(best.lambda<-mod lasso cv$lambda.min)

#final variable selected with the best lambda
lasso_model<-glmnet (x=train x,y=train y,family="binomial",alpha=1, lambda=best.lambda)

lasso _modelSbeta

#Training logistic models

# 1)fit the selected model (AIC backward)
model backward<-glm(formula=stunting ~ region + location + wealth index + diarrhea +
Numb_under5 + ethnicity + age childgrp + fam size + BMI_GRP +
dist facility + birth typ + birth order + brth weightgrp
,data=traindata, family="binomial")

summary (model backward)

# Estimating cutpoints on training data

p<-predict (model backward,newdata=traindata, type="response")

traindatal <- cbind(traindata, p)

traindatal$stunting<- ifelse (traindatal$stunting=="stunted",1,0)
cutpointl<-optimal.cutpoints (X="p",status="stunting",
tag.healthy=0,method=c ("MaxSe"),data=traindatal,

categorical.cov=NULL, pop.prev=NULL, control=control.cutpoints(),ci.fit=TRUE)

summary (cutpointl)

# performance measure (ROC) on test data

predicted<-predict (model backward, newdata=testdata, type="response")

pt<-predict (model backward,newdata=testdata, type="response")
pb <- prediction(pt, testdata$stunting)

prfb <- performance (pb, measure = "tpr", x.measure = "fpr")

#Cut off points at 0.5

testdata$stunting<- ifelse (testdata$stunting=="stunted",1,0)
confusionMatrix (testdata$stunting, predicted)

misClassError (testdata$stunting, predicted)

sensitivity (testdata$stunting, predicted)
specificity(testdata$stunting, predicted)

#Cut off points at 0.36
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confusionMatrix (testdata$stunting,predicted, threshold=0.36)
misClassError (testdata$stunting, predicted, threshold=0.36)
sensitivity(testdata$stunting,predicted, threshold=0.36)
specificity(testdata$stunting,predicted, threshold=0.36)

auc <- performance (pb, measure = "auc")
auc <- aucl@y.values[[1]]
auc

ci.auc (testdata$stunting, pt)

V = caret::varImp (model backward)

ggplot2::ggplot (V, aes (x=reorder (rownames (V),Overall), y=Overall)) +
geom _point ( color="blue", size=4, alpha=0.6)+
geom_segment ( aes (x=rownames (V) , xend=rownames (V), y=0, yend=Overall),
color="'skyblue') +
xlab ('Variable') +
ylab ('Overall Importance (backward model) ')+
theme light() +

coord flip()

# 2)fit the selected model (AIC forward)
model forward<-glm(formula = stunting ~ age childgrp + wealth index + brth weightgrp + birth typ
+

BMI GRP + child sex + occu cat + birth order + Numb under5 +

fam size + dist facility + location + diarrhea + ethnicity +

region, family = "binomial", data = traindata)

summary (model forward)

# Estimating cutpoints on training data

pf<-predict (model forward,newdata=traindata, type="response")

traindatafl <- cbind(traindata, pf)

traindataflS$stunting<- ifelse(traindatafl$stunting=="stunted",1,0)
cutpointfl<-optimal.cutpoints (X="pf", status="stunting",
tag.healthy=0,method=c ("SpEqualSe"),data=traindatafl,
categorical.cov=NULL, pop.prev=NULL, control=control.cutpoints (), ci.fit=TRUE)
table (traindatafl$stunting)

summary (cutpointfl)

# ## performance measure (ROC) on test data

predictedl<-predict (model forward, newdata=testdata, type="response")

pfo<-predict (model forward,newdata=testdata, type="response")

pfol <- prediction(pfo,testdata$stunting)
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prfol <- performance(pfol, measure = "tpr", x.measure = "fpr")

#Cut off points at 0.5

confusionMatrix (testdata$stunting, predictedl)
misClassError (testdata$stunting, predictedl)
sensitivity (testdata$stunting,predictedl)
specificity (testdata$stunting,predictedl)

#Cut off points at 0.36

confusionMatrix (testdata$stunting,predictedl, threshold=0.36)
misClassError (testdata$stunting, predictedl, threshold=0.36)
sensitivity (testdata$stunting,predictedl, threshold=0.36)
specificity(testdata$stunting,predictedl, threshold=0.36)

aucl <- performance (pfol, measure = "auc")
aucl <- aucl@y.values[[1l]]
aucl

ci.auc (testdata$stunting, pfo)

B = caret::varImp(model forward)

ggplot2::ggplot (B, aes (x=reorder (rownames (B),Overall), y=Overall)) +
geom point ( color="blue", size=4, alpha=0.6)+
geom_segment ( aes (x=rownames (B) , xend=rownames (B), y=0, yend=Overall),
color="'skyblue') +
xlab ('Variable') +
ylab ('Overall Importance (forward model) ')+
theme light() +

coord flip()

# 3)fit the selected model (AIC_BOTH)

model stepwise<-glm(formula = stunting ~ age_childgrp + wealth index + brth weightgrp +
birth typ + BMI _GRP + child sex + occu cat + birth order +
Numb under5 + fam size + dist facility + location + diarrhea +
ethnicity + region, family = "binomial",

data = traindata)

summary (model stepwise)

# Estimating cutpoints on training data

ps<-predict (model stepwise,newdata=traindata, type="response")

traindatasl <- cbind(traindata, ps)

traindatasl$stunting<- ifelse (traindatasl$stunting=="stunted",1,0)

cutpointsl<-optimal.cutpoints (X="ps",status="stunting",
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tag.healthy=0,method=c ("SpEqualSe"),data=traindatasl,
categorical.cov=NULL, pop.prev=NULL, control=control.cutpoints (), ci.fit=TRUE)

table (traindatasl$stunting)

summary (cutpointsl)

## performance measure (ROC) on test data

predicted2<-predict (model stepwise, newdata=testdata, type="response")

psl<-predict (model stepwise,newdata=testdata, type="response")
ps2 <- prediction(psl, testdata$stunting)

psf2 <- performance (ps2, measure = "tpr", x.measure = "fpr")

#Cut off points at 0.5

confusionMatrix (testdata$stunting, predicted?2)
misClassError (testdata$stunting, predicted?2)
sensitivity(testdata$stunting,predicted?)
specificity(testdata$stunting, predicted?2)

#Cut off points at 0.36

confusionMatrix (testdata$stunting, predicted2, threshold=0.36)
misClassError (testdata$stunting, predicted2, threshold=0.36)
sensitivity (testdata$stunting,predicted?, threshold=0.36)
specificity(testdata$stunting, predicted?2, threshold=0.36)

auc2 <- performance (ps2, measure = "auc")
auc2 <- auc2@y.values[[1]]
auc?2

ci.auc (testdata$stunting, ps2)

# 4)Fitting selected model (RF Logistic)

rf sel<-glm(formula=stunting ~ location + wealth index + agegrpl + age hhgrp + age childgrp +
fam size + BMI_GRP + dist facility + birth typ + birth order +
brth weightgrp, family="binomial",data=traindata)

summary (rf_sel)

# Estimating cutpoints on training data

prf<-predict (rf sel,newdata=traindata, type="response")

traindatarl <- cbind(traindata, prf)

traindatarl$stunting<- ifelse(traindatarl$stunting=="stunted",1,0)
cutpointrl<-optimal.cutpoints (X="prf", status="stunting",
tag.healthy=0,method=c ("SpEqualSe"),data=traindatarl,

categorical.cov=NULL, pop.prev=NULL, control=control.cutpoints(),ci.fit=TRUE)
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table (traindatarl$stunting)

summary (cutpointrl)

## performance measure (ROC) on test data

predicted23<-predict (rf sel, newdata=testdata, type="response")

p23<-predict (rf sel,newdata=testdata, type="response")
pr23 <- prediction(p23, testdata$stunting)

prf23 <- performance (pr23, measure = "tpr", x.measure = "fpr")

#Cut off points at 0.5

confusionMatrix (testdata$stunting, predicted23)
misClassError (testdata$stunting, predicted23)
sensitivity (testdata$stunting, predicted23)
specificity(testdata$stunting, predicted23

#Cut off points at 0.37

confusionMatrix (testdata$stunting,predicted23, threshold=0.37)
misClassError (testdata$stunting, predicted23, threshold=0.37)
sensitivity (testdata$stunting,predicted23, threshold=0.37)
specificity(testdata$stunting,predicted23, threshold=0.37)

auc23 <- performance (pr23, measure = "auc")
auc23 <- auc23@y.values[[1l]]
auc?23

ci.auc (testdata$stunting, p23)

#4)Fitting selected model (LASSO Logistic)

LASSO sel<-glm(formula=stunting ~ location + wealth index + agegrpl + age hhgrp + age childgrp +
fam size + BMI _GRP + dist facility + Numb under5 + religion cat + meducation +

birth typ + birth order + region + diarrhea + occu cat

del assistance +
ethnicity + child sex + sex hh +
brth weightgrp, family="binomial",data=traindata)

summary (LASSO_sel)

# Estimating cutpoints on training data

pl<-predict (LASSO sel,newdata=traindata, type="response")

traindatall <- cbind(traindata, pl)

traindatall$stunting<- ifelse(traindatall$stunting=="stunted",1,0)
cutpointll<-optimal.cutpoints (X="pl", status="stunting",
tag.healthy=0,method=c ("SpEqualSe"),data=traindatall,

categorical.cov=NULL, pop.prev=NULL, control=control.cutpoints(),ci.fit=TRUE)
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table (traindatall$stunting)

summary (cutpointll)

## performance measure (ROC) on test data

predicted24<-predict (LASSO_sel, newdata=testdata, type="response")

p24<-predict (LASSO_ sel,newdata=testdata, type="response")
pr24 <- prediction(p24, testdata$stunting)

prf24 <- performance (pr24, measure = "tpr", x.measure = "fpr")

#Cut off points at 0.5

confusionMatrix (testdata$stunting, predicted24)
misClassError (testdata$stunting, predicted24)
sensitivity (testdata$stunting, predicted24)
specificity(testdata$stunting, predicted24)

#Cut off points at 0.37

confusionMatrix (testdata$stunting,predicted24, threshold=0.37)
misClassError (testdata$stunting, predicted24, threshold=0.37)
sensitivity (testdata$stunting,predicted24, threshold=0.37)
specificity(testdata$stunting,predicted?24, threshold=0.37)

auc24 <- performance (pr24, measure = "auc")
auc24 <- auc24@y.values[[1l]]
auc?24

ci.auc (testdata$stunting, p24)

#Model judgement

model judge<-glm(formula=stunting ~ location + wealth index + child sex + age childgrp +
fam size + Numb_ under5 + meducation +
birth typ + diarrhea +

brth weightgrp, family="binomial",data=traindata)

summary (model judge)
ODDS<-exp (cbind ("odds ratio"=coef (model judge),confint.default (model judge,level = 0.95)))
print (ODDS)

# Estimating cutpoints on training data

pj<-predict (model judge,newdata=traindata, type="response")

traindatajl <- cbind(traindata, pj)
traindatajl$stunting<- ifelse(traindatajl$stunting=="stunted",1,0)
cutpointijl<-optimal.cutpoints (X="pj",status="stunting",

tag.healthy=0,method=c ("SpEqualSe"),data=traindatajl,
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categorical.cov=NULL, pop.prev=NULL, control=control.cutpoints(),ci.fit=TRUE)
table (traindatajl$stunting)

summary (cutpointjl)

# performance measure (ROC) on test data

predicted7<-predict (model judge, newdata=testdata, type="response")

p7<-predict (model judge,newdata=testdata, type="response",threshold=0.37)
pr7 <- prediction(p7, testdata$stunting)

prf7 <- performance (pr7, measure = "tpr", x.measure = "fpr")

#Cut off points at 0.5

confusionMatrix (testdata$stunting, predicted?)
misClassError (testdata$stunting, predicted?)
sensitivity (testdata$stunting, predicted?7)

specificity(testdata$stunting,predicted?)

#Cut off points at 0.37

confusionMatrix (testdata$stunting,predicted?7, threshold=0.37)
misClassError (testdata$stunting, predicted7, threshold=0.37)
sensitivity(testdata$stunting,predicted’, threshold=0.37)
specificity (testdata$stunting,predicted7, threshold=0.37)

auc7 <- performance (pr7, measure = "auc",threshold=0.37)
auc7 <- auc7@y.values[[1l]]
auc’

ci.auc (testdata$stunting, p7)

#analysis by gender (male vs female)

model judge gender<-glm(formula=stunting ~ location + wealth index + age childgrp +
fam size + Numb under5 + meducation +
birth typ + diarrhea +

brth weightgrp, family="binomial",data=traindata)

pg<-predict (model judge gender,newdata=testdata, type="response")

testdatagl <- cbind(testdata, pg)

testdatagl$stunting<- ifelse (testdatagl$stunting=="stunted",1,0)
cutpointgl<-optimal.cutpoints (X="pg", status="stunting",
tag.healthy=0,method=c ("SpEqualSe"),data=testdatagl,

categorical.cov="child sex",pop.prev=NULL, control=control.cutpoints(),ci.fit=TRUE)

summary (cutpointgl)
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#analysis by location (rural vs urban)

model judge loc<-glm(formula=stunting ~ child sex + wealth index + age childgrp +
fam size + Numb_under5 + meducation +
birth typ + diarrhea +
brth weightgrp, family="binomial",data=traindata)

pl<-predict (model judge loc,newdata=testdata, type="response")

testdatall <- cbind(testdata, pl)

testdatall$stunting<- ifelse (testdatall$stunting=="stunted",1,0)
cutpointll<-optimal.cutpoints (X="pl", status="stunting",
tag.healthy=0,method=c ("SpEqualSe"),data=testdatall,

categorical.cov="1location",pop.prev=NULL, control=control.cutpoints(),ci.fit=TRUE)

summary (cutpointll)

#model fit ,common variable
model com<-glm(formula=stunting ~ wealth index + age childgrp +

fam size + birth typ + brth weightgrp, family="binomial",data=traindata)

summary (model com)
# Estimating cutpoints on training data

pc<-predict (model com,newdata=traindata, type="response")

traindatacl <- cbind(traindata, pc)

traindatacl$stunting<- ifelse(traindatacl$stunting=="stunted",1,0)
cutpointcl<-optimal.cutpoints (X="pc", status="stunting",
tag.healthy=0,method=c ("SpEqualSe"),data=traindatacl,
categorical.cov=NULL, pop.prev=NULL, control=control.cutpoints(),ci.fit=TRUE)

table (traindatacl$stunting)

summary (cutpointcl)

# performance measure (ROC) on test data

predicted8<-predict (model com, newdata=testdata, type="response")

p8<-predict (model com,newdata=testdata, type="response")
pr8 <- prediction(p8, testdata$stunting)

prf8 <- performance (pr8, measure = "tpr", x.measure = "fpr")

#Cut off points at 0.5

confusionMatrix (testdata$stunting, predicted8)
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misClassError (testdata$stunting, predicted8)

sensitivity(testdata$stunting,predicted8)

specificity (testdata$stunting, predicted8)

#Cut off points at 0.37

confusionMatrix (testdata$stunting,predicted8, threshold=0.37)

misClassError (testdata$stunting, predicted8, threshold=0.37)

sensitivity(testdata$stunting,predicted8, threshold=0.37)

specificity (testdata$stunting,predicted8, threshold=0.37)

auc8 <- performance (pr8, measure = "auc",threshold=0.37)

auc8 <- auc8@y.values[[1l]]

aucs8

ci.auc(testdata$stunting, p8,threshold=0.37)

Q O = 2 n o<
Il

bacwd<-ggplot2::ggplot (V,

= caret:
= caret:
= caret:
caret:
= caret:
= caret:

= caret:

:varImp (model backward)
:varImp (model forward)
:varImp (model stepwise)
:varImp (LASSO_sel)
:varImp (rf_sel)

:varImp (model judge)

:varImp (model com)

geom_point ( color="blue", size=2, alpha=0.6)+

geom_segment ( aes (x=rownames (V) , xend=rownames (V),

color="'skyblue') +

xlab ('Variable') +

ylab ('importance') +

theme light () +

coord flip()

forwd<-ggplot2::ggplot (B,

geom point( color="blue", size=2, alpha=0.6)+

geom_segment ( aes (x=rownames (B), xend=rownames (B),

color="'skyblue') +

xlab ('Variable') +

ylab ('importance') +

theme light() +

coord flip()

step<-ggplot2::ggplot (S,

geom _point ( color="blue", size=2, alpha=0.6)+

geom_segment ( aes (x=rownames (S) ,

xend=rownames (S) ,
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y=0,

y=0,

y=0,

aes (x=reorder (rownames (V) ,Overall), y=Overall))

yend=Overall),

aes (x=reorder (rownames (B) ,Overall), y=Overall))

yend=Overall),

aes (x=reorder (rownames (S) ,Overall), y=Overall))

yend=Overall),

+

+

+



color="'skyblue') +
xlab ('Variable')+
ylab ('importance') +
theme light() +
coord flip()

rf<-ggplot2::ggplot (F, aes(x=reorder (rownames (F),Overall), y=Overall)) +
geom point ( color="blue", size=2, alpha=0.6)+
geom_segment ( aes (x=rownames (F), xend=rownames (F), y=0, yend=Overall),
color="'skyblue') +
xlab ('Variable')+
ylab ('importance') +
theme light() +
coord flip()

laso<-ggplot2::ggplot (L, aes (x=reorder (rownames (L),Overall), y=Overall)) +
geom _point ( color="blue", size=2, alpha=0.6)+
geom_segment ( aes (x=rownames (L), xend=rownames (L), y=0, yend=Overall),
color="'skyblue') +
xlab ('Variable')+
ylab ('importance') +
theme light() +
coord flip()

judge<-ggplot2::ggplot (Q, aes (x=reorder (rownames (Q),Overall), y=Overall)) +
geom point( color="blue", size=2, alpha=0.6)+
geom_segment ( aes (x=rownames (Q), xend=rownames (Q), y=0, yend=Overall),
color="'skyblue') +
xlab ('Variable') +
ylab ('importance') +
theme light () +
coord_flip()

com var<-ggplot2::ggplot(C, aes(x=reorder (rownames (C),Overall), y=Overall)) +
geom point( color="blue", size=2, alpha=0.6)+
geom_segment ( aes (x=rownames (C), xend=rownames (C), y=0, yend=Overall),
color="'skyblue') +
xlab ('Variable') +
ylab ('importance') +
theme light() +
coord flip()

ggarrange (bacwd, forwd, step +rremove ("x.text"),

labels=c ("A","B","C"),

ncol=3,nrow=1)
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ggarrange (laso,rf, judge,com var +rremove ("x.text"),
labels=c ("va, "E", "F") ,

ncol=3,nrow=1)

#COMPARING ROC PLOT of 7 Models

plot (prfb,col="red", lwd=2)

plot (prfol,add=TRUE, col="green", lwd=2)

plot (psf2,add=TRUE, col="blue", lwd=2)

plot (prf23,add=TRUE, col="black", lwd=2)

plot (prf24,add=TRUE, col="yellow", lwd=2)

plot (prf6,add=TRUE, col="pink", lwd=2)

plot (prf8, add=TRUE, col="orange", lwd=2)

title (main="Comparison of ROC Curves", font.main=4)

plot range<-range(0,0.5,0.5,0.5,0.5)

legend (0.5, plot range([2],c("backward","forward", "stepwise", "random

forest", "LASSO", "judgement", "common var"), cex=0.2,
col=c("red","green", "blue", "black", "yellow", "pink", "orange"), pch=21:22, lty=1:2)

abline (a=0,b=1,1wd=2,1ty=2,col="gray")
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