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ABSTRACT 

 

Child stunting, defined as impaired height for age, is a major indicator of severe undernutrition 

and is more prevalent in Sub-Saharan Africa.  Individual child stunting risk factors for childhood 

stunting are well-studied and known. This study aimed at assessing the viability of combining 

individual child stunting risk factors into a simple risk factor prediction model that could be used 

to predict stunting among children aged 5 years or lower. Firstly, a systematic review of risk 

factors for childhood stunting was conducted. Secondly, using stunting data on nearly 5,000 

children aged 5 years or below in the Malawi Demographic Health Survey (MDHS 2015-16) we 

identified risk factors that were used in the primary multivariate logistics model for child 

stunting.  Thirdly, several reduced models were then obtained depending on the variable 

selection algorithm that included backward, forward, stepwise, random forest, Least Absolute 

Shrinkage and Selection Operator (LASSO), and own subjective judgment. Finally, from each 

reduced multivariable logistic model, a stunting risk score, based on its coefficients, was 

calculated for each child.  The stunting risk prediction models were assessed using 

discrimination measures including area under-receiver operator curve (AUROC), sensitivity and 

specificity. The systematic review produced 68 predictor variables of child stunting, of which 67 

were available from the 2016 MDHS dataset, and 27 had complete information. The common 

risk factors selected by all the variable selection methods include household wealth index, age of 

the child, household size, type of birth (singleton/multiple births), and birth weight.   The best 

cut-off point on the child stunting risk prediction model was 0.37. The best predictive model was 

based on risk factors determined by the judgment method, which had AUROC 64% (95% CI: 

60%-67%) in the test data. For children residing in urban areas, the AUROC was 67% (95% CI: 

58-76%) as opposed to those in rural areas, AUROC =63% (95% CI: 59-67%).  The derived 

child stunting risk prediction model could be useful as a first screening tool to identify children 

more likely to be at risk of stunting. The identified children could then receive necessary 

nutritional interventions.   
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CHAPTER 1  

INTRODUCTION 

 

1.1. Introduction 

child malnutrition persists to pose a significant public health challenge in the sub-Saharan 

African region. About 3.1 million children are projected to lose their lives each year, either 

directly or indirectly, due to malnutrition. Moreover, around 165 million children experience the 

long-term effects of stunted growth, limiting their full growth potential ( Shinsugi , et al., 2015). 

According to the 2016 national data on childhood undernutrition in Malawi, it was found that 

37% of young children experienced stunting, 3% were affected by wasting, and 12% were 

underweight (National Statistical Office, 2017). In 2019, the prevalence levels of stunting, 

underweight, and wasting in Malawi were documented as 39%, 12%, and 2%, respectively 

(Mtenda, 2019). The prevalence of stunting, greater than 20% in under five children is regarded 

as a public health concern by the World Health Organization (WHO) ( Uwiringiyimana , 

Veldkamp, & Ocke, 2019). Stunting (child’s height-for-age z-score) serves as a marker of 

inhibited linear growth and the aggregate deficit in growth faced by children (Akombi, Agho, Astell-

Burt, Hall, & Renzaho, 2017). Stunting affects child health adversely by causing continued 

consequences, such as damaged cognitive abilities and educational performance during 

childhood, which could have harmful implications for adult health and economic productivity ( 

Aguayo V. M., Nair, Badgaiyan, & Krishna, 2016).  

The framework established by the World Health Organization (WHO) outlines comprehensively 

the factors that influence stunting. These factors are classified into four primary closely related 

factors in the WHO framework: household and family-related factors, insufficient practices 

regarding complementary feeding, inadequate practices concerning breastfeeding, and infections 

(Stewart, Iannotti, Dewey, Michaelsen, & Onyango, 2013). Numerous research studies have studied 

several factors influencing stunting as discussed in the subsequent section.   
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1.2. Factors Associated with Stunting. 

1.2.1. Predictor Search Strategy 

The study conducted a search of PubMed and Google Scholar databases for relevant articles 

between August and December 2021. Several searches were performed with the search terms 

“Determinants of stunting AND Africa” or “Risk factors of stunting AND Africa” or “Predictors 

of stunting AND Africa”. All duplicate articles were eliminated from the results. In total, 28 

articles were considered for the final identification of predictors of stunting in the sub-Saharan 

African region. 

 

1.2.2. Demographic Factors 

According to the study done by Mtambo et al. (2018), the primary factors influencing child 

stunting in Malawi were identified as child sex, sex of the household head, type of residence, 

maternal education, ethnicity, child age, and maternal height. Child sex was indicated as a 

significant determinant of child stunting ( McDonald, et al.; Akombi, Agho, Astell-Burt, Hall, & 

Renzaho, 2017; Nshimyiryo , et al., 2019; Woldeamanuel & Tesfaye, 2019; Uwiringiyimana , 

Veldkamp, & Ocke, 2019; Bukusuba, Kaaya, & Atukwase, 2017; Chirande, et al., 2015; 

Nkurunziza , Meessen, Van geertruyden , & Korachais, 2017; Dake, Solomon, Bobe, Tekle, & 

Tufa, 2019). The geopolitical zone was reported to be an important feature of stunting in a study 

that was done in Nigeria (Akombi, Agho, Astell-Burt, Hall, & Renzaho, 2017) 

 

Research conducted in Tanzania observed that the age of a household head <35 years was a 

significant feature of stunting (Semali, 2015).  The analysis that was done by Haile and others in 

2016, the results showed that being male and belonging to a household with a male head were 

identified as factors that raised the probability of being stunted. Furthermore, the study observed 

that children in the age bracket of 24 and 35 months had higher chances of experiencing stunting 

in comparison with children who were under one year old. The educational qualification of the 

father, and the mother’s body mass index (greater or equal to 25.0kg/m2) were identified as 

some of the community-level factors linked with stunting ( Haile , Azage , Mola , & Rainey, 
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2016)Various studies have reported mother’s education is a significant predictor of child stunting  

(Akombi, Agho, Astell-Burt, Hall, & Renzaho, 2017; McDonald, et al., 2012; Nshimyiryo , et 

al., 2019; Chirande, et al., 2015; Nkurunziza , Meessen, Van geertruyden , & Korachais, 2017; 

Cruz, Azpaitia, Suarez, Rodriguez, & Ferrer, 2017; Habimana & Biracyaza, 2019; Haile , Azage 

, Mola , & Rainey, 2016; Kofi, 2018). Nkurunziza found that marital status was a contributing 

factor of child stunting among children in the age category of 6-23 months. Some studies found 

that residence was an important predictor of child stunting  ( Kismul , Acharya , Mapatano , & 

Hatløy, 2018; Woldeamanuel & Tesfaye, 2019; Cruz, Azpaitia, Suarez, Rodriguez, & Ferrer, 

2017; Mehta, Suchdev, Rhodes, & Williams, 2018). Chirande (2015) conducted an in Tanzania 

and found that the birth order of the child and geographical region were important determinants 

of stunting.  It was also found in other studies that the mother’s height was a factor affecting 

child stunting  ( Kismul , Acharya , Mapatano , & Hatløy, 2018; Berhe, Seid, Gebremariam, 

Berhe, & Etsay, 2019) 

 

Studies conducted in Africa found that the count of under-five children in the household was 

associated with child stunting ( Fikadu , Assegid, & Dube, 2014; Berhe, Seid, Gebremariam, 

Berhe, & Etsay, 2019; Cruz, Azpaitia, Suarez, Rodriguez, & Ferrer, 2017; Nkurunziza , 

Meessen, Van geertruyden , & Korachais, 2017; Kofi, 2018). Studies conducted in Ethiopia and 

the Democratic Republic of Congo revealed that maternal age was an important variable 

affecting stunting (Woldeamanuel & Tesfaye, 2019; Kismul , Acharya , Mapatano , & Hatløy, 

2018); Additional case-control research was done in Tigray, North Ethiopia, which concluded 

that the body mass index (BMI) of the mother played a significant role in detecting child stunting 

within the region ( Berhe, Seid, Gebremariam, Berhe, & Etsay, 2019). It was reported that family 

size was one of the predictors of stunting among under-five children ( Fikadu , Assegid, & Dube, 

2014; Cruz, Azpaitia, Suarez, Rodriguez, & Ferrer, 2017). Child age was also found to be a 

significant determinant of child stunting ( Berhe, Seid, Gebremariam, Berhe, & Etsay, 2019; 

Shinsugi , et al., 2015; Chirande, et al., 2015; Uwiringiyimana , Veldkamp, & Ocke, 2019; Dake, 

Solomon, Bobe, Tekle, & Tufa, 2019; Sema , Azage , & Tirfie, 2021). A study implemented in 

Ghana revealed that ethnicity was among the factors associated with child stunting (Kofi, 2018). 

Using standard regression methods on the Rwandan Demographic and Health Survey, Habibana 

and Biracyaza indicated that maternal age was a factor influencing stunting among children 
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under-five 5 years of age in Rwanda ( Habimana & Biracyaza, 2019). Low maternal height and 

mother's literacy were also reported to be predictors of stunting among children under-five years 

( Nshimyiryo , et al., 2019). Another study with a specific emphasis on the practices related to 

complementary feeding was rolled out in Rwanda and the results showed that the child’s age and 

the caretaker’s BMI were important predictors of child stunting ( Uwiringiyimana , Veldkamp, & 

Ocke, 2019). In Ethiopia, children belonging to Muslim, Orthodox, and other traditional religious 

communities were observed to have increased chances of facing stunting when contrasted to 

children from the Protestant community ( Gebru , Haileselassie, Temesgen, Seid, & Mulugeta, 

2019).   

 

1.2.3. Economic Factors. 

Several studies, particularly those conducted in Africa, have found an association between 

economic factors and stunting. One study in Malawi revealed that the working status of the 

mother and the availability of radio/TV were significant predictors of child stunting (Mtambo et 

al., 2018). Several authors concurred with each other that the household wealth index was an 

important determinant of stunting among children in sub-Saharan countries (Akombi, Agho, 

Astell-Burt, Hall, & Renzaho, 2017; Nkurunziza , Meessen, Van geertruyden , & Korachais, 

2017; Chirande, et al., 2015; Habimana & Biracyaza, 2019). Residing in houses constructed with 

wood or straw, or lacking a proper floor, as well as cooking with charcoal, were identified as 

factors influencing stunting among children less than five years old in Mozambique. (Cruz, 

Azpaitia, Suarez, Rodriguez, & Ferrer, 2017). Mother’s occupation was reported to be an 

important determinant of child stunting (Keino, Ettyang, & Borne, 2014; Keino, Ettyang, & 

Borne, 2014). Bakasuba reported that food insecurity and type of housing were also important 

determinants of child stunting ( Bukusuba, Kaaya, & Atukwase, 2017). Household income had 

also been reported to be a predictor of stunting among children less than five years old (Keino, 

Ettyang, & Borne, 2014). It was found that children from households that were rearing animals 

were less likely to be stunted than those from households that were not rearing animals ( 

Shinsugi , et al., 2015). It had been revealed that household poverty was also a determinant of 

child stunting among children in poor countries  ( Nshimyiryo , et al., 2019; Kismul , Acharya , 

Mapatano , & Hatløy, 2018). In Malawi, it was learned that children from mothers who were on 

health insurance were less likely to be stunted than children from mothers who were not on 
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health insurance ( Afolabi & Palamuleni, 2019). Children from households that were depending 

on food from the farms (own production) were found to have decreased chances of being stunted 

than those who were depending on purchased food from the market ( Tariku , Biks , Derso , 

Wassie, & Abebe, 2017) 

 

1.2.4. Child Caring Practices and Environmental Health Factors 

Practices related to childcare and environmental health factors have been reported as 

determinants of child stunting in studies conducted in some countries around Africa. In Malawi, 

it was shown that vitamin A supplementation, vaccination coverage and period of breastfeeding 

were associated with child stunting. ( Mtambo , Masangwi, & Kazembe , 2014)   Akombi and 

others conducted a study in Nigeria and found that prolonged duration of breastfeeding (>12 

months) was a determinant of child stunting (Akombi, Agho, Astell-Burt, Hall, & Renzaho, 

2017). One study reported that an unimproved water supply and vitamin A deficiency were 

associated with stunting ( Mehta, Suchdev, Rhodes, & Williams, 2018). Another study revealed 

that the duration of exclusive breastfeeding, period of breastfeeding and method of feeding 

supplementary food were predictors of child stunting ( Fikadu , Assegid, & Dube, 2014). Where 

one gets drinking water was also reported to be a significant predictor of child stunting in various 

research conducted in Africa ( Mtambo , Masangwi, & Kazembe , 2014; Fikadu , Assegid, & 

Dube, 2014; Kismul , Acharya , Mapatano , & Hatløy, 2018). It was shown that early initiation 

of breastfeeding was an important determinant of child stunting among under-five children ( 

Kismul , Acharya , Mapatano , & Hatløy, 2018; Kofi, 2018). Consuming fortified food, visiting 

antenatal care facilities, sharing toilets and breastfeeding were given as crucial determinants of 

child stunting in a study carried out in Rwanda ( Habimana & Biracyaza, 2019). A separate study 

carried out in Rwanda demonstrated that exclusive feeding during the preceding six months and 

dietary intake of zinc were identified as predictors of child stunting ( Uwiringiyimana , 

Veldkamp, & Ocke, 2019). The results of some studies in East Africa showed that deworming 

tablet use was also a significant predictor of child stunting  ( Uwiringiyimana , Veldkamp, & 

Ocke, 2019; Nshimyiryo , et al., 2019). Kofi conducted a study in Ghana and concluded that 

exposure to a proper toilet facility and visiting a health centre were some of the predictors of 

stunting among children less than five years old (Kofi, 2018). The use of family planning 
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methods and pre-breastfeeding were also observed to be determinants of stunting in children ( 

Dake, Solomon, Bobe, Tekle, & Tufa, 2019). Like in other studies in Africa, caregivers’ 

knowledge of stunting and initiation time to complementary food were reported to be 

determinants of child stunting in a study conducted by Bakasuba ( Bukusuba, Kaaya, & 

Atukwase, 2017). Nkurunziza and others found that distance to a health facility can also predict 

child stunting ( Nkurunziza , Meessen, Van geertruyden , & Korachais, 2017).  The availability 

of improved latrine facilities was also reported to determine child stunting ( Haile , Azage , Mola 

, & Rainey, 2016). Continued breastfeeding for 1 year was revealed to be a significant factor 

associated with child stunting ( Nsereko, et al., 2018). Children whose mothers did not 

consistently use water and soap for handwashing had higher odds of childhood stunting ( Sema , 

Azage , & Tirfie, 2021).  Krasevec and others found that children who were not given food from 

animal source on the previous day had elevated chances of being stunted contrasted to children 

who were given all three groups of food from animal sources (eggs, meat, and dairy) ( Krasevec, 

An, Kumapley, Bégin, & Frongillo, 2017). WHO dietary diversity score was reported to be 

associated with stunting  ( Berhe, Seid, Gebremariam, Berhe, & Etsay, 2019; Krasevec, An, 

Kumapley, Bégin, & Frongillo, 2017). A study conducted in Ethiopia had shown that feeding 

powdered or fresh milk, feeding formula, eating organ meat, and taking fruits high in beta-

carotene as part of the diet, and vegetables were significant factors linked to stunting (Ayelign & 

Zerf, 2021). 

 

 1.2.5. Obstetric Conditions, Child Illness and Additional Maternal Factors. 

 Stunting in children is also linked to obstetric conditions, child illness and additional maternal-

related factors as observed in some studies conducted in sub-Saharan Africa. It was revealed that 

infectious diseases were important predictors of stunting in children less than five years in 

Malawi ( Mtambo , Masangwi, & Kazembe , 2014). Macdonald and others found that child HIV 

infections and low Apgar score at birth were important predictors of child stunting ( McDonald, 

et al., 2012). It was revealed that the birth size of the child, place of delivery and low birth 

weight were some of the predictors of child stunting ((Akombi, Agho, Astell-Burt, Hall, & 

Renzaho, 2017; Nkurunziza , Meessen, Van geertruyden , & Korachais, 2017; Chirande, et al., 

2015).  Chirande and others concluded that the type of delivery assistance was one of the factors 
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affecting child stunting ( Chirande, et al., 2015). Diarrhoea episodes were reported in various 

studies as a predictor of child stunting among under-five children in sub-Saharan Africa  ( Dake, 

Solomon, Bobe, Tekle, & Tufa, 2019; Woldeamanuel & Tesfaye, 2019; Akombi, Agho, Astell-

Burt, Hall, & Renzaho, 2017; Berhe, Seid, Gebremariam, Berhe, & Etsay, 2019). Haile and 

others reported that short birth intervals and severe anaemia were factors associated with child 

stunting ( Haile , Azage , Mola , & Rainey, 2016).  A study that was done in Ethiopia showed 

that having a fever influenced stunting ( Sema , Azage , & Tirfie, 2021). Various studies had 

shown that being multiple births also significantly increases the odds of childhood stunting ( 

Gebru , Haileselassie, Temesgen, Seid, & Mulugeta, 2019; Afolabi & Palamuleni, 2019; Ayelign 

& Zerf, 2021). 

As seen in the preceding review, several potential predictors of stunting in children less than five 

years old have been studied.  These are summarized in Table 1  

 

Table 1. Characteristic of the selected studies on child stunting and associated risk factors 

(no of studies =28) 

 

Title Authors, Year Country 

Type of 

data 

Number 

of 

children Method 

Risk factor 

identified 

Analysis Of Childhood 

Stunting in Malawi 

Using Bayesian 

Structured Additive 

Quantile Regression 

Model 

Owen P. L. Mtambo, 

Lawrence Kazembe 

and Salute Masangwi 

(2014) Malawi DHS 2138 

Bayesian 

Structured 

Additive 

Quantile 

Regression 

Model 

Sex of child, Sex of 

household head, 

Type of residence, 

mother's working 

status, Vitamin A 

supplementation, 

Vaccination 

coverage, 

Availability of 

radio/TV, Source of 

drinking water, 

infectious diseases, 

maternal education, 

ethnicity, child age 

and duration of 

breastfeeding 

Prevalence and 

Determinants of 

Stunting in Under-five 

Children in Central 

Tanzania: a remaining 

threat to Achieving 

Millennium 

Development Goal 4 

Innocent Antony 

Semali, Anna Tengia-

Kessy, Elia John 

Mubanga, and 

Germana Leyna 

(2015) Tanzania 
Survey 
data 678 

multivariat
e logistic 
regression 

Age of household 

head <35yrs, 

Maternal education, 

and ownership of the 

mobile phone 
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Determinant of Stunting 

among Preschool 

Children in the 2015-

2016 Malawi 

Micronutrient Survey 

Rukshan Mehta, Anne 

Williams (2018)  Malawi 
Survey 
data   

block 
stepwise 
logistic 
regression 

underweight status, 

Vitamin A 

deficiency, 

Unimproved water 

supply, rural 

residence, household 

hunger 

Determinant of Stunting 

and Severe stunting 

among Burundian 

Children Aged 6-23 

months: Evidence from 

a national cross-

sectional household 

survey  

Sandra Nkurunziza, 

Bruno Meesen, Jean-

Piere Van 

Geertruyden, 

Catherine Karachais 

(2014) Burundi 
Survey 
data 6199 

Binary and 
multivariat
e logistic 
regression 

low birth weight, size 

of the baby at birth, 

sex of the child, 

Place of delivery, 

family wealth index, 

maternal education, 

marital status, 

distance to a health 

facility, severe food 

insecurity, and 

number of under-five 

years children in the 

household. 

Determinants of 

stunting and Severe 

Stunting among Under-

Five in Tanzania: 

evidence from the 2010 

cross-sectional 

household survey. 

Lulu Chirande, 

Debora Charwe, 

Hadijar Mbwana, 

Rose Victor, Sebas 

Kimboka, Abukar 

Ibrahim Isaka (2015) Tanzania 
Survey 
data 7324 

multiple 
logistic 
regression 

maternal education, 

sex of child (male), 

age of the child, 

household wealth 

index, place of 

delivery, type of 

delivery assistance, 

birth order of the 

child, the perceived 

size of the baby at 

birth, source of 

drinking water, 

geographical region 

Determinant of 

Childhood Stunting in 

the Democratic 

Republic of Congo: 

Further Analysis of 

Demographic and 

Health Survey 2013-14 

Hallgeir Kismul, 

Pawan Acharya, Mala 

Ali Mapatamo and 

Anne Hatloy (2018) 

Democratic 
Republic of 
Congo DHS 9030 

logistic 
regression 

Province, poverty, 

residence (rural), 

mother's height, 

source of drinking 

water, early initiation 

of breastfeeding, 

childbirth intervals, 

mother's age >20yrs 

Risk factors of Stunting 

(Chronic 

Undernutrition) of 

Children Aged 6 to 24 

Months in Mekelle City, 

Tigray Region North 

Ethiopia: Unmatched 

case-control Study 

Kidanemay Berhe, 

Omer Seid, Yemane 

Gebremariam Almez 

Berhe, Natnael Etsay 

(2019) Ethiopia 
Survey 
data 330 

logistic 
regression 

mother's height, 

mother's body mass 

index, Childbirth 

weight, number of 

under-five children 

in the household, 

repeated diarrhoea 

episodes and WHO 

dietary diversity 

score 

Factors Associated with 

Under-five Stunting, 

Wasting and 

Underweight Based on 

Ethiopian Demographic 

Health Survey Dataset 

in Tigray Region 

Ethiopia 

Berhann Teshome 

Woldeamanuel, and 

Tigist Tigabie 

Tesfaye (2019) Ethiopia DHS 1077 

multivariat
e binary 
logistic 
regression 

maternal age, source 

of drinking water, 

sex of the child, 

antenatal follow-ups, 

diarrhea episodes, 

household wealth, 

birth weight, and 

residence(rural) 
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Factors Associated with 

Stunting Among 

Children According to 

the Level of Food 

Insecurity in the 

Household: a cross-

sectional Study in a 

rural community of 

Southern Kenya 

Chisa Shinsugi, 

Masaki Matsumura, 

Mohamed Karama, 

Junichi Tanaka, 

Mwatasa Changoma 

and Satoshi Kaneko 

(2015) Kenya 
Survey 
data 404 

multivariat
e logistic 
regression 

age of the child, 

animal rearing, 

number of siblings 

younger than school 

age 

Factors Associated with 

Stunting Among 

Children Aged 0 to 59 

Months from the 

Central Region of 

Mozambique 

Loida M. Garcia 

Cruz, Gloria 

Gonazlez Azpeitia, 

Desderio Reyes 

Suarez, Alfredo 

Santana Rodriguez, 

Juan Francisco Loro 

Ferrer and Lluis 

Serra-Majem (2017) 

Mozambiqu
e 

Survey 
data 282 

multiple 
logistic 
regression 

birthweight, maternal 

education status, 

maternal occupation, 

living in rural areas, 

family size, number 

of children under-

five years of age in 

the household, 

cooking 

withcharcoal, 

inhabiting wooden or 

straw housing or 

housing without a 

proper floor, duration 

of breastfeeding 

complementary 

feeding 

Early feeding practices 

and stunting in 

Rwandan Children; a 

cross-sectional study 

from the 2010 Rwanda 

Demographic and 

Health Survey 

Etienne Nsereko, 

AssumptaMukabutera

, Damien Lyakaranye, 

Yves Didier 

Umwungerimwiza, 

Valens Mbrushimana, 

Manasse Nzayirabaho 

(2018) Rwanda DHS 1634 

multivariat
e logistic 
regression 

continued 

breastfeeding for 1 

year 

Predictors of Childhood 

Stunting in Ghana: A 

cross-sectional survey 

of the Association 

Between Stunting 

among children under 

age five and maternal 

bio-demographic and 

socioeconomic 

characteristics in Ghana 

2014 

Janet Oyedi Kofi 

(2018) Ghana DHS 2759 
logistic 
regression 

early initiation of 

breastfeeding, access 

to proper toilet 

facility, mother’s 

level of education, 

ethnicity, access to 

health care, number 

of under-five 

children in the 

household (>20 

Predictors of Stunting 

among Children 6-59 

months of Age in Sodo 

Zuria District, South 

Ethiopia: a community-

based cross-sectional 

study  

Samson Kastro Dake, 

Fithamlak Bisetegen 

Solomon, Testahun 

Molla Bobe, Habtamu 

Azene Tekle and 

Efrata Girma Tufa 

(2019) Ethiopia 
Survey 
data 342 

multivariat
e logistic 
regression 

sex of the child, Age 

of the child, use of 

family planning, 

diarrhea morbidity, 

Pre-lacteal feeding 
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Predictors of Stunting 

with Particular Focus on 

Complementary feeding 

practices: a cross-

sectional Study in the 

Northern Province of 

Rwanda 

Vestine 

Uwiringiyimana, 

Marga C. Ockey, 

Sherif Amer, Antonie 

Veldkamp (2018) Rwanda 
Survey 
data 138 

logistic 
regression 

Age of child, 

exclusive 

breastfeeding, 

deworming tablet use 

in the previous 6 

months, caretaker 

body mass index and 

dietary zinc intake. 

Risk Factors for 

Stunting among 

Children Under-five 

Years: a cross-sectional 

population-based Study 

in Rwanda Using 2015 

Demographic and 

Health Survey 

Alphonse Nshimyryo, 

Bethany Hedt-

Gauttier, Christine 

Mutaganzwa, 

Catherine M. Kirk, 

Kathryn Beck, Albert 

Ndayisaba, Joel 

Mubiligi Fredrick 

Kateera and Ziad El-

Khatib (2019) Rwanda DHS 3594 
logistic 
regression 

Sex of child, age of 

the child, low birth 

weight, low maternal 

height, mother's 

education, mother's 

literacy, deworming 

tablet use, poverty of 

household. 

Predictors of stunting in 

Children Aged 6 to 59 

Months: a case-control 

study in Southwest 

Uganda 

John Bakusuba, 

Archileo N. Kaaya, 

Abel Atukwase 

(2017) Uganda 
Survey 
data 168 

multiple 
logistic 
regression 

Sex of the child, food 

insecurity, initiation 

time to 

complimentary food, 

caregiver's 

knowledge about 

stunting and type of 

housing. 

Risk Factors of Stunting 

Among Children Under-

five 5 Years of Age in 

the Eastern and Western 

Provinces of Rwanda: 

Analysis of Rwanda 

Demographic and 

Health Survey 

2014/2015 

Samuel Habimana, 

Emmanuel Biracyaza 

(2019) Rwanda DHS   

multiple 
logistic 
regression 

maternal education, 

maternal age, 

maternal occupation, 

wealth index, sex of 

the child, fortified 

food intake, antenatal 

care visit, 

breastfeeding 

Stunting and Severe 

Stunting among 

Children Under Five 

Years in Nigeria: a 

multilevel analysis 

Blessings J. Akombi, 

Kingsley E. Agho, 

John J. Hall, Andre 

M.N Renzabo 

Thomas Astell-

Burtand Dafna 

Merom (2017) Nigeria DHS 24529 

multilevel 
logistic 
regression 

sex of the 

child(male), mother's 

perceived birth size 

(small and average), 

household wealth 

index, duration of 

breastfeeding (more 

than 12 months) 

geopolitical zone, 

and diarrhea episodes 

prior to the survey. 

Factors Associated with 

Stunting Among 

Children of 24 to 59 

Months in Meskan 

district, Gurage Zone, 

South Ethiopia: a case-

control study. 

Teshale Fikadu, 

Sahilu Assegid, 

Lamessa Dube (2014) Ethiopia 
Survey 
data 242 

logistic 
regression 

family size, number 

of under-five 

children in the 

household, maternal 

occupation, duration 

of exclusive 

breastfeeding, 

duration of 

breastfeeding and 

method of feeding 

complementary food. 
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Exploring Spatial 

Variations and Factors 

Associated with 

Childhood Stunting in 

Ethiopia: Spatial and 

multilevel analysis 

Damewoz Haile, 

Muluken Azage, 

Tegegn Mola, 

Rochelle Rainey 

(2016) Ethiopia DHS 9893 

multilevel 
multivariat
e logistic 
regression 

short birth interval, 

sex of the child, sex 

of household head, 

age of the child, 

severe anaemia, 

mother's education, 

father's education 

level, mother's body 

mass index, family 

wealth, and 

availability of 

improved latrine 

facilities 

Predictors of Stunting, 

Wasting and 

Underweight among 

Tanzanian Children 

Born to HIV-infected 

Women  

CM McDonald, R. 

Kupka, K.P Manji, J 

Okuma, R. J Bosch, S 

Abound, R. Kisenge, 

D. Spiegelman, W. 

W. Fawzi and C. P. 

Duggan (2012) Tanzania 
survey 
data 2387 

Multivariate 

Cox 

proportional 

hazards 

low maternal 

education, few 

household 

possessions, low 

infant birth weight, 

child HIV infection, 

sex of the child and 

low Apgar score at 

birth 

Childhood Stunting and 

Associated Factors 

among Irrigation and 

Non-irrigation Users, 

northwest Ethiopia: A 

comparative cross-

sectional Study  

Balew Sema, 

Muluken Azage, 

Mulat Tirfie (2021) Ethiopia 
Survey 
data 1164 

Multivariate 

logistic 

regression 

 Child age, ANC 

visit, fever, ways of 

hand washing habits 

Diet Quality and Risk of 

Stunting among Infants 

and Young Children in 

Low-and Middle-

Income Countries 

Julia Krasevec, 

Xiaoyi An, Richard 

Kumapley, France 

Begin, Edward A. 

Froyginllo. () LMIC DHS  74548 

Multiple 

logistic 

regression 

Dietary diversity, 

animal source food 

consumption (ASF) 

Determinants of 

Stunting among Under-

five Children in 

Ethiopia: A Multilevel 

mixed- effects analysis 

of 2016 Ethiopian 

Demographic and health 

survey data 

K. Fantay Gebru, 

W.Mekoonnen 

Haileselassie, 

A.Hafton Temegen, 

A. Oumar Serd, 

B.Afework Mulugeta. 

(2019) Ethiopia EDHS 8855 

Multilevel 

logistic 

regression 

Child age, child size 

at birth, child sex, 

maternal education, 

poverty, multiple 

births, religion 

Determinants of 

Stunting among Under-

five Children in Malawi 

Felix Afolabi, Martin 

E Palamuleni (2019) Malawi DHS 5707  

Child sex, anaemia, 

location, wealth 

index, mothers’ 

education, multiple 

births, child size at 

birth, mother’s 

weight, health 

insurance, 
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Household, Dietary and 

Healthcare Factors 

Predicting Childhood 

Stunting in Ethiopia 

Abebe Ayelign, 

Taddese Zerfu (2021) Ethiopia EDHS 11023 
Logistic 

regression 

Maternal education, 

child sex, possession 

of refrigerator, 

possession of 

television, multiple 

births, type of 

cooking fuel, feeding 

powdered or fresh 

milk, formula 

feeding, consumption 

of organ meat, ANC 

follow-up, birth size 

deworming during 

pregnancy, feeding 

beta-carotene rich 

fruits and vegetables, 

house main floor 

materials 

Stunting and its 

Determinant Factors 

among children aged 6-

59 months in Ethiopia. 

Amare Tariku, 
Gashaw Andargie 
Biks, Terefe Derso, 
Molla Mesele 
Wassie, Solomon 
Mekonnen Abebe 
(2015) Ethiopia 

Survey 
data 1295 

Logistic 

regression 

Mother’s occupation, 

postnatal vitamin A 

supplementation, 

wealth index, Source 

of family food 

Prevalence and 

Determinants of 

Concurrent Wasting and 

Stunting and Other 

Indicators of 

Malnutrition among 

Children 6-59 months 

old in Kersa, Ethiopia 

Akhlu Abrham Roba, 
Nega Assefu, Yadeta 
Dessie, Abebe Tolera 
Kedir Teji, Hemler 
Elena,Lilia 
Bliznashka, Wafaise 
Fawzi. Ethiopia 

Survey 
data 1091 

Logistic 

regression 

Child age, child sex, 

cough, maternal, 

education maternal 

occupation, maternal 

BMI 

 

About 28 articles were reviewed in this study. Table 1 presents details of the studies that were 

reviewed. Many of the studies considered in the analysis were implemented in countries located 

in Eastern Africa. The sample sizes ranged from 138 to 74,548. The factors consistently linked to 

stunting, as indicated in Table 1, include the child's sex, maternal education, geographical 

location, the count of under-five children in the household, family size, wealth index, instances 

of diarrhea, birth weight, multiple births, and the age of the child. The study applies a series of 

variable selection methods using a multivariable logistic regression to identify the best predictive 

factors for child stunting. 

 

1.3. Variable Selection 

According to Heinze et al. (2017), statistical models can be described as straightforward 
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mathematical principles derived from empirical data that depict the relationship between an 

outcome and multiple explanatory variables. One of the problems in building a simple model is 

how to choose a subset of independent features to include in a model among the many variables 

that a researcher is presented within the dataset. Many scientists know the existence of several 

variable selection algorithms and their use, but they do not know that they produce poor-

performing models (Ratner, 2010). Model building strategy is dependent on the purpose and the 

discipline of study. Some variable selection algorithms work well in other disciplines and do not 

perform well in other disciplines. The purpose of different variable selection methods in model 

fitting is to develop a simpler statistical model that is valid, provides predictions with acceptable 

accuracy, and is practically useful (Heinze, Wallisch, & Dunkler, 2018). 

 

In most cases, the use of variable selection algorithms has been guided by the researcher’s 

preference or experience. Automated techniques such as stepwise methods are commonly used 

and can be done using several statistical software packages that are on the market ( Liao & Lynn, 

2010). This has been the case even though the efficiency of stepwise selection of variables 

compared with other strategies such as all possible subsets, forward and backward elimination 

and LASSO in modelling health-related outcomes using logistic regression is not known. The 

weakness of stepwise in binary logistic regression is well documented. The R-squared values that 

are provided by the stepwise method of selecting variables tend to exhibit a strong bias towards 

higher values, and the regression coefficients derived from them are biased and require 

adjustment (Ratner, 2010). 

 

A balance must be struck between model complexity and its usefulness when building a model. 

Furthermore, it is important to apply judgment based on the researcher's expertise in the subject 

area so that variable selection is not only driven by statistical significance. Without this balance, 

one runs the risk of having a model with covariates without any predictive significance.  

 

The process of selecting variables has gathered significant attention in various fields of research, 

including the sector of health, and has become a focal point of extensive research. The variable 

selection offers numerous advantages, including augmenting the predictive performance of a 

model, providing a more concise and cost-effective set of variables by reducing training and 
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utilization time, enabling data visualization, and providing a complete comprehension of the 

fundamental data generation process (Chowdhury & Turin, 2020). There are many determinants 

of stunting, however, it is difficult to use all the determinants to predict stunting. Hence, it would 

be more robust to select the best predictors that will help predict stunting. This can be achieved 

by applying the various statistical methods that have been developed for variable selection. The 

main problem faced then would be to build a model from a broad range of variables that should 

be incorporated into the "optimal" model to predict child stunting in sub-Saharan Africa. 

 

1.4.  Aims and Objectives. 

The overall objective of this thesis was to develop and validate a child stunting prediction score 

in the context of sub-Saharan Africa (SSA). This was accomplished through the following 

objectives: 

a) A review of selected studies to detect predictors of stunting in children, aged 0-59 

months in SSA. 

b) To compare the selected predictor variables of child stunting between six variable 

selection methods, namely forward selection, backward elimination, and stepwise 

selection; Least absolute shrinkage and selection operator (LASSO); and random 

forest  

c) To compare the discriminative performance of the selected six sets of variables ((in b) 

above) in a multivariate logistic regression model for risk prediction score for child 

stunting. 
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CHAPTER 2 

ANALYSING BINARY OUTCOME DATA 

 

2.1.  Binary Outcomes in Health Studies 

 In health sciences research, several outcomes are measured on different scales. A common 

measurement is where the interest is in the existence or nonexistence of a disease or condition 

resulting in binary outcomes. For example, in medical research interest could be in assessing 

whether a patient is dead or alive, the success of a treatment (cured or not cured) and whether a 

child has a growth condition (stunted and not stunted). Assume for subject i, ni .......,1  a binary 

response Y with categories 0 and 1 is observed. In this study Y=1, represents a stunted child and 

Y=0 represents a child who is not stunted. Several approaches are used to analyze binary 

outcomes which include probit, logistic regression, naïve Bayes, decision trees, support vector 

machine, and k-nearest neighbour. The most common approach is the logistic regression model 

because it does not require greater computational capacity. Therefore, logistic regression is 

comparatively simpler to implement, interpret, and train when compared to other machine 

learning models. Logistic and probit models do not have many differences. The differences 

between probit and logistic regression are just theoretical, the logistic model employs logit 

transformation, whereas the probit model utilizes the inverse Gaussian link for their respective 

computations. In this study, logistic regression is employed. The next section provides a brief 

description of statistical approaches for binary outcomes with much emphasis on the binary 

logistic model. 

 

2.2.  Binary Logistic Regression Model. 

Consider the response Y as defined in section 2.0 where Yi takes values of 0 or 1 for the child i  

and considers observed data as  XYO , , and  K

T XXXX ..., 21  is the observed 1 by q 

vector of covariates representing the characteristics of a child i . If the study assume that )( ix  is 

a probability that a child i  with covariates 𝑋𝑖 takes a value𝑌𝑖 = 1, the distribution for this 
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outcome, 𝑌𝑖 = 1 is specified by the Bernoulli distribution as  

 

    1,0;|1
1




i

y

iiiii yxpxXYp i

 

The logistic regression then fits the probability function.  

           

 
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x
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
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


exp1
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                                                      (1) 

The probability that the subject does not have the outcome (stunting) is  x1 , thus one can 

have.  
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                      (3) 

Equation 3 simplifies equation 4 as follows.                 

                   
 

 x
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exp1

1
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                                                (4) 

Therefore, the odds of a child experiencing stunting is expressed as 

                   

 
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1                            (5) 

Simplifying equation 5 gives equation 6 below.  

                   

 
 

 x
x

x








exp

1                                                       (6) 

This is the proportion of the likelihood of being stunted and the likelihood of not being stunted. 

By taking the log of the odds of being stunted which is expressed as a function of the covariates 

gives equation 7: 

 

                      

 
 

 x
x

x







1
log

                                                    (7)      

A researcher is interested in observing if the probability of being stunted is higher or lower than 

the odds of not being stunted.  
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2.3.  Parameter Estimation 

Logistic regression intends to approximate the unknown parameters, in equation 4. Equations 

attained with the ultimate likelihood approximation which requires discovering a collection of 

parameters for which the chance of the recorded data is maximum. The highest likelihood 

expression is obtained from the probability distribution of the response variable (Czepiel, 2002).  

 

By utilizing this approach, values of   are derived to optimize the likelihood function. As each 

iy  corresponds to an individual binomial count within the 
thi  population, the contribution of 

each subject (child) i to the likelihood function is determined for a specific value of the predictor 

X, and the function can be presented as.  

  

                          
yy xYPxYP  1)|0()|1(                    (8)    

Hence, when Y equals 1, the contribution is represented as )|1( xYP   , and when Y equals 0, 

the contribution transforms into )|0( xYP  .                                                 

Therefore, the joint probability density function of Y is given by multiplying the individual 

contributions, and it is gotten by: 

                  

  iii

i

i

yn

i

y

i

N

i

n

y

yf












  1)/(

1                              (9) 

Where 







 i

i

n

y  are various permutations for arranging iy  successes (stunted children) from among 

in  trials (children). i  is the chance of a child being stunted for any single of the in  children, 

and i1  is the chance of a child who is not stunted. 

The values of   are stated based on predetermined fixed values for y, and this can be presented 

as. 
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1                                (10)  

The quantities of    that optimize Equation 10, are referred to as the greatest likelihood 

estimates. The log-likelihood expression is a more conceivable form of the function above. It is 
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formed by applying the natural logarithm to equation 10. In general, the log-likelihood is easier 

to work with, and mathematically it is expressed as. 

                         
        




n

i

iiii yyyl
1

1log1log/ 
         (11). 

By differentiating this function concerning   and equating the expression to zero, the estimated 

quantities of the parameters can be obtained. To work out the equations and obtain the resulting 

values  , an iterative method known as Newton-Raphson is employed. Other methods are used 

to estimate model parameters. The Markov Chain Monte Carlo (MCMC) estimation algorithm is 

also used for parameter estimation (Nemeth, 2014). Others have used ridge regression estimation 

methods to estimate parameters in regression (Dorugade, 2014). 

 

2.4.  Variable Selection Methods 

Numerous methods for variable selection have been proposed; however, there is no consensus on 

a single approach that consistently performs well under all circumstances. Therefore, for each 

dataset, the technique for variable selection should be carefully chosen ( Khiabani, 

Ramezankhani, Azizi, & Hadaegh, 2015). One direct technique for variable selection involves 

leveraging subject matter expertise acquired through literature review and expert consultations. 

However, it is worth noting that these options may not always be accessible. Another frequently 

employed method involves utilizing p-values for examining statistically significant predictors 

either through univariable analysis or by employing a multivariable forward or backward 

selection process. Various variable selection techniques are formally available in purchased 

software packages. Commonly used techniques, which are of interest in this thesis are forward 

selection, backward elimination, stepwise, least angle regression and shrinkage (LARS), Least 

absolute shrinkage and selection operator (LASSO) and random forest variable selection. Some 

of these variable selection methods are discussed below. 

 

2.4.1. Backward Elimination (BE) 

It is the most straightforward algorithm for selecting features. It begins with a model that 

includes all potential features. One by one, the features are removed from the model until only 
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those that contribute significantly to the outcome remain in the model. The removal process 

starts with the feature that has minimal impact on the model. The feature that has the smallest p-

value below the threshold value or the variable with the utmost p-value above the threshold value 

is considered to provide a minimal contribution. After removing the least significant feature, the 

model is modified with that variable excluded, and the p-values are recalculated. This repetitive 

process continues, removing variables having the minimum p-value or the largest p-value 

exceeding the designated threshold in each model, which is then refitted accordingly. The 

approach is replicated until all remaining features are regarded as significant at the specified 

threshold value. This specified threshold figure is termed as 'p-to-remove' and should not always 

be put at 0.05 (Chowdhury & Turin, 2020). Pual and others recommended a p-value between 

0.15 to 0.2  (Paul , Pennell, & Lemeshow, 2013).  This is to make sure that all relevant variables 

are included in the model. 

 

2.4.2. Forward Selection (FS). 

This technique for feature selection is the opposite of the backward elimination algorithm. The 

method commences with zero variables in the model and afterwards, variables are incrementally 

added to the model until none of the variables not incorporated in the model can introduce any 

substantial impact to the model’s output.  During each repetition, the added variables are 

assessed for potential addition in the model. The p-value is calculated if an added variable is 

considered. The variable that yields the highest test statistic exceeding the cutoff value or the 

smallest p-value below the cutoff value is chosen and incorporated into the model. Essentially, 

the variable with the highest level of significance is prioritized for addition. Subsequently, the 

model is readjusted to include this variable, and new p-values are figured for the features that 

remain in the model. Once more, the variable that has the highest test statistic surpassing the 

cutoff value or the lowest p-value below the cutoff value is selected from the features that remain 

and are included in the model. This procedure is continued until no more features are significant 

at the designated cutoff value when included in the model. A feature that is included in the model 

will not be removed from the model. (Chowdhury & Turin, 2020) 
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2.4.3.  Stepwise Selection 

It involves both forward and backward selection methods, allowing the inclusion and removal of 

variables in different steps. It can begin with either a backward elimination or a forward selection 

process. If forward selection is selected, variables are appended to the model one after the other 

according to their statistical significance. After each addition, the process assesses every variable 

already incorporated in the model and removes any that are not significant. This process goes on 

until all variables in the model are significant and all excluded variables are insignificant. This 

approach is sometimes considered an altered version of forward selection, although variables 

incorporated into the model may not necessarily stay in it. On the other hand, if backward 

elimination is the starting point, variables are originally eliminated from the model with all 

variables based on statistical significance. However, if any of the previously excluded variables 

later indicate significance, they are added again into the model. This process involves iteratively 

selecting the feature offering the least contribution to eliminate from the model. After this, all 

eliminated variables are reassessed for potential reintroduction. Two distinct significance levels 

(cut-offs) are required in Stepwise selection for removing and adding the variables in the model. 

The significance value for incorporating features should be more accurate compared to that for 

removing variables to avoid the process from entering an infinite loop. Backward elimination is 

often preferred within stepwise selection because it analyzes the model with all features`` and 

evaluates the impact of all contender variables (Chowdhury & Turin, 2020). 

 

2.4.4.  Least Absolute Shrinkage and Selection Operator (LASSO) 

A penalty is applied to the totality of squares or log-likelihood, which corresponds to the 

absolute addition of regression coefficients. LASSO regulates the selection of features by 

reducing the residual addition of squares while ensuring that the addition of the absolute figures 

of the coefficients stays below a constant threshold, t . Mathematically, it can be represented as 

follows. 

            

   



p

j

nXyJ
1

2 ||||||minarg 
                                    (12) 
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The use of LASSO as a feature selection technique can be seen from the fact that decreasing the 

values of  lead to shrinkage of regression coefficients and some of these even become zero. 

 

2.4.5.  Least Angle Regression and Shrinkage (LARS) 

Least angle regression (LARS) is a sophisticated approach to model selection that can be 

considered an advancement of the stagewise algorithm, providing quick calculations (Iturbide et 

al., 2013). The approach begins by loading all coefficients as zero and captures the covariates 

that show the highest correlation with the response variable. After that, LARS takes a step of 

maximum magnitude in the route of this independent variable until another independent variable 

becomes equally correlated with the remaining residual. At this stage, LARS continues by 

moving in a route that has equal angles between the two features until the K-th feature is 

included in the model denoted as βk. In the case where K is equal to the total number of 

covariates, a logistic model is obtained. The objective is to select an appropriate value for K that 

results in a more straightforward and more inclusive model. A cross-validation procedure is 

employed to choose the optimal number of independent variables to be incorporated into the 

ultimate model. 

 

2.4.6.  Random Forest 

Random forest is built upon the bagging technique. This technique involves creating multiple 

subsets of the original dataset through resampling with replacement. Each subset is then used to 

train a separate model, and the final prediction is obtained by aggregating the predictions of all 

the individual models to each sample. The random forest technique is employed to calculate 

variable importance metrics, allowing for the ranking of variables based on their predictive 

importance. Permutation importance is employed, which is computed by comparing the 

prediction performance before and after permuting the variable values, averaged across all trees. 

The importance calculation in each tree only considers out-of-bag observations (Degenhardt, 

Seifert, & Szymczake, 2019). The variables that have large importance values are relevant for 

prediction and those variables with values of importance close to zero, are said to have no 

association with the outcome of interest. 
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2.4.6.1.  Boruta Method 

Boruta was developed as an extension to the Random Forest algorithm, and it is a popular 

ensemble learning method. Boruta is designed to detect the most relevant features in a dataset by 

comparing them to randomized versions of the features in the dataset. 

The main idea behind Boruta is to determine the importance of features by comparing their 

performance to that of randomly created "shadow" features. These shadow features are created 

by permuting the values of the original features while keeping the target variable unchanged. The 

Boruta algorithm then uses an altered Random Forest model to assess the importance of the 

original features comparative to the shadow features. 

During the procedure, Boruta allocates a measure of importance, called the "Z-score," to each 

variable. The Z-score indicates the degree of evidence that a variable is truly important compared 

to the shadow variable. Boruta increasingly eliminates immaterial features by iteratively 

comparing their Z-scores to a threshold value. 

At the end of the procedure, Boruta produces a set of variables that have been selected to be 

significantly more important than the shadow features. These important features can be used for 

further analysis or as input to other machine learning models. 

 

2.4.7.  Judgement Variable Selection Method 

Numerous methods for variable selection have been proposed; however, there is no consensus on 

a single approach that consistently performs well under all circumstances. Therefore, for each 

dataset, the technique for variable selection should be carefully chosen ( Khiabani, 

Ramezankhani, Azizi, & Hadaegh, 2015). In statistical analysis, prior knowledge derived from 

scientific literature is considered the primary basis for determining the inclusion or exclusion of 

covariates. However, such information may not always be accessible for all research questions 

(Walter & Tiemeier, 2009). The judgement variable selection method relies on field expertise 

acquired through reviewing relevant literature and consulting with experts. 
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2.5.  Stopping Rule/Selection Criteria in Variable Selection.  

It is important to know when to stop the process of including and excluding variables during the 

variable selection procedure. A standard significance level for hypothesis testing such as a p-

value is often used. Other criteria that are also used as stopping rules are Akaike’s information 

criterion (AIC), Bayesian information criterion (BIC), and Mallows’ Cp statistic. These are also 

employed as model assessment tools, and they are discussed below. 

 

2.6.  Model Selection Methods 

When selecting a criterion for model selection, it is acknowledged by the researchers that models 

serve as approximations of reality. When provided with a dataset, the goal is to identify the 

candidate model that best approximates the data. This entails attempting to minimize the loss or 

reduction of information. As such, AIC, BIC, and Mallows’ Cp statistics are used for model 

selection. 

 

2.6.1 Akaike’s Information Criterion (AIC) 

The Akaike’s information criterion (AIC) was established by Akaike in 1973. It is a 

mathematical technique applied to judge the degree of alignment between a model and the data 

from which it was derived. The AIC (1973) is defined as  

                                            ̂ln22 LKAIC                                           (13) 

Where K is the number of estimated parameters in the candidate model and  ̂L  is the estimate 

from the log-likelihood function. AIC quantifies the comparative information content of a model 

by utilizing maximum likelihood estimates and counting the number of parameters involved in 

the model, as indicated in the above-mentioned formula. It is employed to assess and distinguish 

various potential models, helping in the identification of the best-fit model that is consistent with 

the given data. It is also used as a stopping rule in variable selection methods. The model giving 

the smallest AIC over the set of models considered is selected as the best model.  

For a small sample size, a modified form called AICc is used instead of the AIC above. The 

AICc is given by. 
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Where n is the sample size 

 

2.6.2. Bayesian Information Criterion (BIC) 

Another method for scoring and selecting a model is the Bayesian information criterion (BIC). It 

uses optimum likelihood estimates like AIC. Mathematically it is expressed as  

                                       nKLBIC logˆ2                                                     (15) 

Where K is the number of parameters estimated in the candidate model and  ̂L   is the estimate 

from the log-likelihood function and n is the size of the sample. Through the blending of a 

punishment term based on the number of independent parameters, the Bayesian Information 

Criterion (BIC) tends to prioritize models that display simplicity or parsimony (A. Berchtold, 

2010). The BIC imposes a severe penalty on more complex models, making them have larger 

scores and less likely to be selected (Jason Brownlee, 2019). Like in AIC, the model exhibiting 

the minimum BIC score is selected as the superior model.  

 

2.6.3.  Mallows’ Cp Statistic 

The Mallows’ Cp criterion was put forward by Mallows in 1972. It relies on the calculation of the 

mean sum of squared errors (MSSE) as the basis. In the context of a model with P-independent 

features, the MSSE can be stated as.  

               222  npRSSEMSSE PP                                             (16) 

The assumption in the PC  criterion is that the model with all the K-independent variables 

involved is correct (Sembiring and Tarigan, 2018). pC
 criterion for a smaller model fitted using 

any subset with p-independent variables where P<k, is expressed as. 

                      
222  npRSSC pP 
                                              (17) 

This 
2 is an unbiased estimator and is estimated by the following, pn

RSSP


2̂

, where KRSS  is 

the residual of the sum of squared values within the model with all the K variables. As in AIC 
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and BIC minimum pC
 denote the best model.   

 

2.7.  Assessment Methods for Prediction Models 

A variety of varied algorithms and measures of performance can be utilized to evaluate the 

effectiveness of prediction models. The commonly used measures for binary response variables 

include the following: Sensitivity, Positive Predictive   Value (PPV) and Negative Predictive 

Value (NPV), Specificity and receiver operating characteristics (ROC). The Brier score, 

concordance (or C) statistic, and the goodness-of-fit statistic have also been used ( Steyerberg & 

Vergouwe, 2014). The area under the receiver operator curve is applied to judge the capability of 

the overall model to classify the outcomes of a disease condition. 

 

2.7.1.  Receiver Operating Characteristics (ROC) 

Receiver Operating Characteristics (ROC) curves are often used to access the ability of a risk 

factor to predict an outcome. Often a risk factor is included in a logistic regression model to 

forecast the likelihood, for example, of a child being stunted. These predictive probabilities or 

risks can be examined to see how accurate they are at identifying children who would be stunted 

or not stunted. Discrimination is commonly measured using ROC curves. The AUC - ROC curve 

is a way to evaluate how well a model can classify data into different categories at different 

threshold levels. The ROC curve is a graphical representation of the model's capability to 

differentiate between the categories, and the AUC (Area Under the Curve) is a numerical 

representation of this ability. A larger AUC reveals a better ability of the model to distinguish 

between the categories, like how a model that can better differentiate between stunted and non-

stunted children would have a higher AUC.  

 

In this process, the predicted probabilities of stunting are repeatedly dichotomized into above 

versus below cut-off points. For each cut-off point, one can estimate the sensitivity (probability 

that the predicted risk is above the cut-off point among stunted children) and specificity 

(probability that the predicted risk is below the cut-off point among children who are not 

stunted). The ROC curve is a plot that illustrates the correlation between sensitivity and 1-
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specificity across various potential cut-off points. This is plotted by varying the cut-off points to 

display a spectrum of sensitivity versus specificity. The area under the ROC curve (AUROC) is a 

useful metric for summarizing the ROC curve. If the ROC curve reaches the top corner of the 

plot (100% sensitivity and 100% specificity) then the model is said to have perfect 

discrimination. A diagonal ROC curve indicates random classification. For binary outcomes, the 

concordance statistic is identical to the AUROC ( Steyerberg & Vergouwe, 2014). The AUROC 

was used to measure discrimination in which models were used to predict acute kidney injury 

(Davis, Lasko, Chen, Siew, & Matheny, 2017). 

 

2.7.2. Sensitivity, Specificity, Positive Predictive Value (PPV) and Negative Predictive Value 

(NPV).  

Sensitivity, negative predictive value (NPV), and positive predictive value (PPV), specificity, are 

significant statistical measures used in diagnostic testing and screening tools. These measures 

provide details regarding the effectiveness or accuracy of a test or screening tool.  

Sensitivity refers to the capacity of a test to accurately detect individuals who exhibit stunting 

(true positives). By dividing the count of correctly identified positive cases (TP) by the 

summation of true positives (TP) and false negatives (FN), sensitivity can be calculated. 

Sensitivity = TP / (TP + FN). Sensitivity is an indicator of the test's capability to correctly detect 

stunting when it is present. Higher sensitivity means that the test has a lower rate of false 

negatives. Sensitivity varies with disease prevalence ( Maxim, Niebo, & Utell, 2014)Specificity refers 

to the test's competence to accurately identify individuals who are not stunted (true negatives). 

By dividing the count of accurately identified negative cases by the sum of true negatives and 

false positives, specificity can be figured out. Mathematically it can be indicated as: Specificity = 

TN / (TN + FP). Specificity is a metric of the test's proficiency to precisely rule out stunting 

when it is not present. Higher specificity means that the test has a lower rate of false positives. 

Like sensitivity, specificity is not independent of prevalence ( Maxim, Niebo, & Utell, 2014) 

Negative Predictive Value (NPV) is the likelihood that a child who is predicted not to be stunted 

is not stunted. It is determined as the ratio of true negatives to the sum of those accurately 
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identified negatives and false negatives. NPV can be calculated using the following formula: 

NPV = TN / (TN + FN).  NPV depends on both sensitivity and specificity, as well as prevalence. 

As prevalence increases, the NPV decreases because there is a higher chance of false negatives, 

irrespective of whether the test exhibits high sensitivity and specificity. Positive Predictive Value 

(PPV) is the chance that a child who is predicted to be stunted is stunted. It is determined by 

dividing the count of true positives by the summation of true positives and false positives. The 

formula is given by: PPV = TP / (TP + FP). PPV also depends on sensitivity, specificity, and 

prevalence. The PPV increases as prevalence increases because there is a higher chance of true 

positives, even if the test has the same sensitivity and specificity. 

Sensitivity and specificity play a crucial role in prediction because they directly reflect the 

performance of a diagnostic or predictive test. They offer information about the precision of the 

test in correctly identifying individuals with or without a particular condition or outcome. 

However, the frequency (prevalence) of the disease condition in the population being tested 

affects Sensitivity, specificity, PPV and NPV. 

High sensitivity is most useful in situations where the consequences of a false negative result are 

significant. For example, in disease screening and infectious disease testing where it is important 

to identify as many true positive cases as possible to ensure early detection and intervention. On 

the other hand, high specificity is most useful in situations where the consequences of a false 

positive result are significant. For example, in confirmatory Tests. 

It is important to note that striking the desired equilibrium between sensitivity and specificity 

depends on the specific context and potential consequences of false positives and false negatives. 

The appropriate choice of sensitivity or specificity is influenced by the objectives of the test, the 

prevalence of the condition, the availability of follow-up tests, and the potential risks associated 

with false results. 

 

2.7.3.  Likelihood Ratio 

Likelihood ratios (LR) are statistical measures utilized to evaluate the diagnostic or prognostic 

value of an examination result. They provide information about how much a positive or negative 
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test result changes the odds of having a disease or experiencing a particular outcome. There are 

two types of likelihood ratios: the positive likelihood ratio (LR+) and the negative likelihood 

ratio (LR-). The positive Likelihood Ratio (LR+) refers to the ratio of the chance of acquiring a 

positive test result in children who are stunted to the likelihood of acquiring a positive test result 

in children who are not stunted. Mathematically, LR+ is determined as the quotient of sensitivity 

of the test and one minus the specificity of the test. Thus LR+ = Sensitivity / (1 – Specificity). 

 

The LR+ indicates how much the chances of being stunted are raised given a positive test result 

is obtained. An LR+ larger than one suggests a correlation between a positive test result and an 

increased likelihood of being stunted. A stronger association is indicated by higher LR+. 

Generally, LR+ values above ten are considered strong evidence for ruling in the disease 

(stunting), while values below one suggest a weak association or a test result that has a higher 

chance of being a false positive.                        

 

The term Negative Likelihood Ratio (LR-) is given to the ratio of the odds of getting a negative 

test result in children who are stunted to the odds of having a negative test result (not stunted) in 

children who are not stunted. Mathematically, the following formula calculates LR-. LR- = (1 - 

Sensitivity) / Specificity. The LR- indicates how significantly the odds of being stunted are 

scaled down given that a negative test result is observed. An LR- lower than one denotes that a 

negative test result is linked to a diminished likelihood of having the disease. The lower the LR-, 

the stronger the association. LR- values closer to zero indicate a strong rule-out potential, while 

values above one suggest a weak association or a test result that has higher odds of being a false 

negative. 

 

2.7.4.  Brier Score 

The Brier score is a quadratic principle that determines the squared differences  2PY   between 

true binary results (Y) and projections (P). It ranges from 0 to 0.25. Zero indicates a complete 

model and 0.25 denotes a non-informative model assuming a 50 per cent occurrence of the 

disease condition. When the occurrence of the disease condition is less frequent, the highest 

possible mark for a non-informative model is reduced ( Steyerberg & Vergouwe, 2014). The 
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study conducted by Kantidakis, and others used the Brier score to compare Cox models and 

machine learning techniques ( Kantidakis, et al., 2020). 

 

2.7.5.  Calibration 

Calibration refers to the precision of risk approximates, specifically the concurrence between the 

predicted and recorded counts of events ( Van Calster, McLernon, van Smeden, Wynants, & 

Steyerberg, 2019). Calibration is typically assessed graphically as the plot of predicted 

probability versus observed proportion. The x-axis of the graph represents the predictions, while 

the y-axis represents the outcome. The ideal prediction would align perfectly with the 45-degree 

line on the graph. In the case of a binary outcome, the y-axis of the plot includes values of 0 and 

1. In research implemented by Dhillon et al., in 2016, calibration was employed to project the 

likelihood of having a live birth for women undergoing in vitro fertilization (IVF) (Dhillon, et 

al., 2016).                                                                                                                                                                                  

 

2.7.6  Model Testing and Evaluation. 

After randomly dividing the dataset into two a training set and a test set, typically using an 80/20 

split, the optimal model parameters are adjusted using the training set. To prevent overfitting, the 

model is evaluated on a separate test set that was not exposed to the models during the training 

process. The efficiency of the model on the test data set is assessed by generating ROC curves 

and calculating the corresponding AUC. The AUROC serves as an indicator of the model's 

proficiency to distinguish or classify disease outcomes. When constructing the ROC curve, the 

true positive rate (TPR) is compared to the false positive rate at different thresholds. The model's 

performance is assessed by utilizing the AUROC. The AUC ranges from 0.50 to 1. Values close 

to 1 indicate stronger classifying capability. A model with a value of 1 represents a perfect 

classifier. An excellent model has values ranging from 0.90 to 0.99, a range of 0.80 to 0.89 is 

considered a good classifier while 0.70 to 0.79 is a fair model but 0.50 to 0.69 denote a poor 

predictive ability. When the curve is diagonal (AUC= 0.50), the model is said to be a random 

classifier meaning that the classification is by chance.  To conduct a thorough evaluation of 

model performance, the sensitivity, PPV, and NPV are all considered. The model that attains the 

highest average performance metric (AUROC) is deemed the optimal predictive model for 
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stunting. 

 

2. 9.  Prediction Score 

Scoring refers to the process of generating predictions using a predictive model. Scoring 

necessitates three components: The first requirement is a predictive model, which is a 

mathematical approach represented by f (x, β). It combines predictor variable values (x) with 

specific quantities (β), known as model parameters, to generate predicted values for the target or 

response variable. Secondly, it is necessary to have specific values for the forecaster variables, 

usually from new data that the model had not seen. Lastly, specific values of the parameters are 

also needed. In general, the prediction score would be generated by  

                                        Pstunting = 1/ (1 + exp (-y))                          (18) 

                                                                  

Where: p is the probability, exp is the natural number, and y is the logistic equation expressed as  

ii XXX  ......22110    in which β0 is the constant,  β and X are vectors of the parameter 

and predictor variables respectively. 

A logistic regression model utilizes a logit link function, which is used to transform the linear 

predictor into a predicted probability for every category or value of the dependent variable, as 

shown in the equation provided. The predicted response for each observation is determined by 

selecting the response level with the highest predicted probability. If the probability is below 0.5, 

the predicted response is assigned as 0 (not stunted). If the probability is 0.5 or higher, the 

predicted response is assigned as 1 (indicating stunted) Equation 18 can be used to compute a 

prediction probability of being stunted manually given the attributes of the child by using 

equation 19 below. 

 

))...(exp(1
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

                                         (19) 

 

2.10.  Sample Size for Model Development and Validation 

Determining the adequate sample size for model development and validation depends on various 

factors, including the complexity of the problem, the available data, and the desired level of 
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statistical significance. While there is no one-size-fits-all answer, literature has proposed at least 

10 events per feature (EPP). Others have loosened up the 10 EPP rule to 5 EPP dependent on the 

type of the model such as logistic or Cox regression ( Baeza-Delgado, et al., 2022)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3 

 METHODOLOGY 

3.1. Application to data for predictors of child stunting  

3.1.1. Data Sources 

The data utilized in this research is derived from the 2015-16 Malawi Demographic and Health 

Survey (MDHS), which is a survey conducted at a national level to ensure representativeness. 

The MDHS collected up-to-date information on mothers’ demographics and health information 

on child nutrition.  The DHS, which was conducted by the National Statistics Office collected 

anthropometric data for the under-five children in selected households. The analysis focused on a 

dataset consisting of 5149 children who were included in the study due to their stunting outcome. 

For more information on the sampling procedure of the DHS, one can refer to the 2015-16 

MDHS report to obtain specific details (National Statistical Office, 2017). 
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3.2.  Variables  

The potential predictors of stunting in this research were chosen according to existing research 

studies about predictors or determinants of stunting that were conducted in Sub-Saharan Africa 

and LMICs. The main predictors were categorized into demographic, economic, child-caring 

practices, obstetric, and other maternal factors. The response variable of this study was stunting 

and was calculated based on the anthropometric indicator (height-for-age) among under-five 

children.  The growth standards that were released by the World Health Organization in 2006 

were employed to compute the height-for-age index of children (WHO, 2006). The height-for-

age index acts as an indicator for both stunted linear growth and the aggregate effects of growth 

shortfalls in children. Stunting is characterized as a state in which children have a height-for-age 

Z-score that is lower than two standard deviations (-2SD) from the median of the reference 

population confirmed by the World Health Organization (Akombi, Agho, Astell-Burt, Hall, & 

Renzaho, 2017).  In this context, the z-score is determined by taking the difference between an 

individual's height at a given age and the median height of the comparative population, and then 

dividing it by the standard variations of the cited population at that exact age or height (WHO, 

2006). The response variable was defined as a binary variable having the following levels, 

category 1(stunted < -2SD) and category 0 (not stunted > -2SD).  

 

3.3.  Selection of Candidate Predictors 

The systematic review produced 68 predictor variables of child stunting, of which 67 were 

available from the 2016 MDHS dataset, and 27 had complete information. In this study, feature 

selection techniques, including forward selection, backward elimination, and stepwise selection, 

were employed. Additionally, the Least Absolute Shrinkage and Selection Operator (LASSO) 

and random forest techniques were utilized to identify significant variables from the list obtained 

from the MDHS-2015 dataset. 
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3.3.1. Automated Variable Selection Method (Backward, forward, and stepwise) 

The study used AIC as a selection criterion to select relevant variables in these automated 

variable selection methods. A package called bootStepAIC in R software was also used to avoid 

overfitting. 

 

3.3.2.  LASSO (variable selection) 

Furthermore, the LASSO binary logistic regression model was employed for variable selection. 

Specifically, features with nonzero values of the coefficients were chosen. The LASSO model 

utilized tenfold cross-validation with the smallest criteria to determine the best parameter 

(lambda) selection. By drawing an upright line at the value determined through tenfold cross-

validation, the best lambda was identified, resulting in 22 variables with nonzero coefficients 

selected. 

 

3.4.  Model Development 

The data extracted from the 2015-16 MDHS were used to develop and train different types of 

predictive models: Random Forest, LASSO regression and Logistic regression using different 

automated variable selection methods. R (version 17) software was used to conduct analysis and 

model development. The data was partitioned into a training set (80%) and a testing set (20%). 

The partitioning was done in such a way that the training dataset (80%) and the testing dataset 

(20%) had almost the same proportion of stunting. To ensure statistically significant outcomes 

and representative characteristics of the entire dataset, the research allocated a 20% portion for 

testing purposes, ensuring an adequate sample size. A training dataset of limited size can enlarge 

the variance of the model's parameter estimates, while a small testing dataset can lead to 

increased variance in the performance statistic of the model (Kohavi, 1995). Consequently, the 

division of data into an 80/20 split aims to minimize both variance values, guaranteeing their 

reduction to the lowest possible levels. To develop and refine the predictive models the study 

used the training dataset. The testing dataset was utilized to gauge the model’s accuracy and 

performance. The variables that were steadily learned to be substantial predictors of stunting in 

the articles that were reviewed were also selected to form a set of variables. This set of variables 

was determined by the researcher’s judgement.  The selected predictors were then used to 
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develop different binary logistic regression models to predict stunting. These models were 

compared with each other for their discriminative ability and predictive performance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4 

 RESULTS 

 

 4.1 Results 

 

4.1.1. Dependent variable 

A total of 4976 under-five children were included in the study (table 4.1). The prevalence of 

stunting in the date set was 35%.  
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Table 2. Dependent variable 

Variable Frequency (n (%)) 

Stunting    

not stunted 3205(64.41) 

Stunted 1771(35.59) 
 

  

4.1.2.  Independent variables  

Tables 3, 4 and 5 present the frequency distribution of potential predictors of stunting in this 

research which were chosen according to existing research studies about predictors or 

determinants of stunting that were conducted in Sub-Saharan Africa and LMICs. The main 

predictors were classified into demographic, economic, child-caring practices, obstetric, and 

other maternal factors. 

 

 Table 3. Demographic variable 

 

Predictor  Frequency (n (%)) 

Maternal age    

<20 yrs 340(6.83) 

20-34 yrs 3709(74.54) 

>=35 yrs 927(18.63) 

Residence   

Rural 4172(83.84) 

Urban 804(16.16) 

Sex of household head   

Female 1301(26.23) 

Male 3671(73.77) 

age of household head   

<35 years 2740(55.06) 

35+ years 2236(44.94) 

sex of the child   

Female 2542(51.09) 

Male 2434(48.91) 
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age of child(months)   

0-6 months 488(9.81) 

6-18 months 1160(23.31) 

Above 18 months 3328(66.88) 

Body mass index   

<18.5 248(4.94) 

18.5-24 3701(74.38) 

>=25 1027(20.64) 

Ethnicity   

Chewa 1647(33.10) 

Tumbuka 682(13.71) 

Lomwe 1205(24.22) 

Ngoni 594(11.94) 

Yao 693(13.93) 

Other  155(3.11) 

Maternal education   

No education 602(12.10) 

 Primary 3263(65.57) 

Secondary and above 1111(22.33) 

Region    

Northern  883(17.75) 

Central  1759(35.35) 

Southern  2334(46.91) 

Number of under5 children in the 

household   

<=1 child 2386(47.95) 

>=2 children 2590(52.05) 

Marital status   

Single 157(3.16) 

Ever married 4251(85.43) 

Married 568(11.41) 

Religion   

Protestant 1224(24.60) 

Catholic 778(15.64) 

Muslim 700(14.07) 

Other religion 2474(45.70) 

Family size   

Small 831(16.70) 

Medium 2757(55.41) 

Large 1388(27.89) 
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 Table 4. Economic factors 

 

wealth index   

Poorest 1086(21.82) 

Poorer 1114(22.39) 

Middle 978(19.65) 

Richer 930(18.69) 

Richest 868(17.44) 

Occupation of mother   

Not working 1464(29.42) 

Agricultural worker 2200(44.21) 

Professional/technical/managerial 336(6.75) 

Sales and services 262(5.27) 

Domestic and unskilled manual 714(14.35) 

 

Table 5. Obstetric, child morbidity and other maternal factors 

 

Predictor Frequency (n (%)) 

    

birth weight   

Low weight 870(17.48) 

Normal weight 4106(82.52) 

birth order number   

First-born 1237(24.86) 

2nd -4th 2564(51.53) 

5th or more 1175(23.61) 

mode of delivery   

Caesarean  308(6.19) 

Normal birth 4668(93.81) 

Diarrhea episodes   

No 3937(79.12) 

Yes 1039(20.88) 

Anaemia level   

Not anemic 3424(68.81) 

Anaemic 1552(31.19) 

preceding birth interval    

no previous birth 2451(52.33) 
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<24 months 301(6.43) 

>24 months 1932(41.25) 

Place of delivery   

Home 376(7.56) 

Facility 4600(92.44) 

Type of birth   

Singleton 4820(96.86) 

Multiple 156(3.14) 

Delivery assistance   

Not health professional  390(7.84) 

Health professional 4586(92.16) 

Cough/fever   

No 3471(69.75) 

Yes 1505(30.25) 

distance to a health facility   

Short distance  2688(54.02) 

Long distance 2288(45.98) 

 

4.2.  Variables Selected by Automated Variable Selection Method (Backward, forward, and 

stepwise) 

The variables selected by backward, stepwise, and forward feature selection methods are 

presented in the table below.  

 

Table 6.  Variables selected by automated methods. 

Backward Forward Stepwise 

Age of child Age of child Age of child 

Type of birth Birth weight Birth weight 

Wealth index Type of birth Type of birth 

Mother’s BMI Wealth index Wealth index 

Mother’s education Mother’s BMI Mother’s BMI 

Sex of the child Ethnicity Ethnicity 

Number of under-five 

children Sex of the child Sex of the child 

Diarrhea maternal occupation maternal occupation 

Distance to a hospital Distance to a hospital Distance to a hospital 

Household size Location Location 

Delivery assistance Diarrhea Diarrhea 

Age of household head 

Number of under-5 

children Number of under-5 children 
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Marital status     

 

4.3.  Variables Selected by Random Forest (Boruta) 

Using Boruta, an algorithm designed specifically for random forests, 11 variables were selected 

from the 27 identified variables. These selected variables were the type of birth, age of the child, 

birth weight of the child, location, distance to facility, wealth index, birth order of the child, age 

of household head, body mass index of the mother and household size. The Boruta variable 

selection path is shown in Figure 1 below. The confirmed important variables are the ones in 

green colour and those that are in red are the ones that are confirmed not to be important and in 

blue are shadow attributes. Shadow attributes in Boruta refer to a set of randomized or shuffled 

versions of the original attributes. These shadow attributes are created to serve as a benchmark 

for assessing the true importance of the original attributes. 

 

  

 

Figure 1: Selected variables: Random Forest, Boruta 

(birth_typ =birth type, age_childgrp=age of child, wealth_index = wealth index, brth_weightgrp = child birth 

weight, location = location, dist_facility = distance to a health facility, birth_order = birth order, age_hhgrp = age 

of household head, BMI_GRP = body mass index, fam_size = family size, agegrp1 = mother’s age, place_deliver = 
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place of delivery, Numb_under5=number of under five children, meducation = mother’s education level, 

del_assistance = delivery assistance, marital_status = marital status, child_sex = sex of child, sex_hh = sex of 

household head, religion_cat = religion of mother, anemic_grp = anemia, mode_del = mode of delivery, occu_cat 

= mother’s occupation, cough_fever = cough/fever) 

 

4.4.  Variables Selected by LASSO.  

Twenty-two variables were selected by LASSO variable selection algorithm. These variables 

included location, wealth index, maternal age, age of household head, age of the child, household 

size, body mass index of the mother, distance to a health facility, number of under-5 children, 

religion, maternal education, type of birth, birth order of the child, region, diarrhea, maternal 

occupation, anaemia, delivery assistance, sex of the child, and sex of household head. 

 

 

 

 

 

4.5.  Variables Commonly Selected by All Variable Selection Methods. 

The research identified factors that were commonly selected by all feature selection algorithms. 

These included the following: household wealth index, age of the child, household size, type of 

birth (singleton/multiple births) and birth weight. 

 

4.6.  Variables Determined by Judgement. 

Using the researcher’s judgement, ten variables were identified. The following were the factors 

that were identified, age of the child, the weight of the child at birth, type of birth, sex of the 

child, wealth index category of the household, number of under-five children in the household, 

location, family size, episode of diarrhea and maternal education.     

 

4.7.  Development of Prediction Models 

All potential variables selected using the different variable selection algorithms were applied to 

develop different binary logistic regression models for predicting stunting. The models that 

included the above features were fitted and tabulated as shown in Table 7. below. 
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Table 7. Prediction factors for stunting 

  Prediction Models 

  

intercept and variable Backward model Forward model Stepwise model Random forest LASSO model Judgement model 

  coeff p-value coeff 
p-
value coeff 

p-
value coeff p-value coeff 

p-
value coeff p-value 

Intercept -0.895 0.004 -0.802 0.009 -0.802 0.009 -0.698 0.010 -0.693 0.541 -0.734 0.001 

Wealth index                         

Poorest ref   ref   ref   ref   ref   ref   

            Poorer -0.081 0.420 -0.084 0.407 -0.084 0.407 -0.117 0.244 -0.075 0.462 -0.098 0.327 

           Middle -0.212 0.045 -0.210 0.046 -0.210 0.046 -0.245 0.019 -0.196 0.067 -0.223 0.034 

            Richer -0.411 <0.001 -0.404 <0.001 -0.404 
<0.00

1 -0.464 <0.001 -0.382 0.001 -0.419 <0.001 

            Richest -0.544 <0.001 -0.508 <0.001 -0.508 
<0.00

1 -0.626 <0.001 -0.458 0.002 -0.552 <0.001 

Sex of child                         

Male ref   ref   ref   ref   ref       

Female -0.175 0.011 -0.178 0.010 -0.178 0.010     -0.169 0.015 -0.178 0.009 

Diarrhea                         

No ref   ref   ref   ref   ref       

Yes 0.157 0.087 0.156 0.072 0.156 0.072     0.169 0.053 0.165 0.056 

Age of household head                         

 >35 years ref   ref   ref   ref   ref       

           35+ years             -0.034 0.702 0.019 0.831     
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Number of under-five 
children                         

<=1 child ref   ref   ref   ref   ref       

            >=2 children 0.192 0.013 0.187 0.016 0.187 0.016     0.192 0.016 0.162 0.033 

Age of child                         

 0-6 months ref   ref   ref   ref   ref       

           6-18 months 0.486 0.001 0.489 0.001 0.489 0.001 0.532 <0.001 0.488 0.001 0.492 0.001 

            Above 18 months 1.035 >0.001 1.041 <0.001 1.041 
<0.00

1 1.012 <0.001 1.036 
<0.00

1 1.016 <0.001 

Household size                         

   Small ref   ref   ref   ref   ref       

            Medium 0.044 0.692 0.049 0.656 0.049 0.656 0.139 0.195 0.054 0.639 -0.024 0.813 

            Large -0.193 0.143 -0.186 0.159 -0.186 0.159 -0.063 0.631 -0.199 0.170 -0.205 0.083 
Body mass index of the 
mother                         

<18.5 ref   ref   ref   ref   ref       

            18.5-24 -0.250 0.105 -0.247 0.109 -0.247 0.109 -0.233 0.128 -0.247 0.111     

           >=25 -0.499 0.004 -0.489 0.004 -0.489 0.004 -0.496 0.004 -0.498 0.004     
Distance to health a 
facility                         

Long distance ref   ref   ref   ref   ref       

            Short distance 0.156 0.032 0.160 0.028 0.160 0.028 0.137 0.057 0.175 0.017     

Delivery assistance                          

Health personnel ref   ref   ref   ref   ref       
            Not health 
personnel                 0.142 0.264     

Type of birth                         

Singleton ref   ref   ref   ref   ref       

           Multiple 1.009 <0.001 1.029 <0.001 1.029 
<0.00

1 1.073 <0.001 1.055 
<0.00

1 1.015 <0.001 

Maternal education                         

No education ref   ref   ref   ref   ref       

            Primary                 -0.162 0.139 -0.171 0.099 
            Secondary and 
above                 -0.237 0.093 -0.279 0.034 
Birth weight of the 
child                         

Low birth weight ref   ref   ref   ref   ref       

Normal birth weight -0.552 <0.001 -0.557 <0.001 -0.557 
<0.00

1 -0.524 <0.001 -0.546 
<0.00

1 -0.554 <0.001 

Location                         

           Urban ref   ref   ref   ref   ref       

            Rural 0.268 0.026 0.231 0.057 0.231 0.057         0.238 0.042 

Mother’s occupation                         

Not working ref   ref   ref   ref   ref       
            Agricultural 
worker     0.028 0.740 0.028 0.740     0.013 0.881     

            
roof/technical/manageri

al     0.192 0.222 0.192 0.222     -0.187 0.240     

           Sales and services     -0.384 0.032 -0.384 0.032     -0.373 0.038     
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           Domestic and 
unskilled     0.069 0.533 0.069 0.533     0.054 0.631     

Ethnicity                         

Chewa ref   ref   ref   ref   ref       

            Tumbuka 0.043 0.795 0.048 0.769 0.048 0.769     0.034 0.836     

            Lomwe -0.340 0.005 -0.340 0.005 -0.340 0.005     -0.351 0.004     

           Ngoni 0.027 0.817 0.035 0.766 0.035 0.766     0.031 0.791     

           Yao -0.179 0.152 -0.177 0.157 -0.177 0.157     -0.168 0.295     

           Other 0.188 0.429 0.179 0.454 0.179 0.454     0.144 0.549     

Birth order                         

First-born ref   ref   ref   ref   ref       

2nd-4th -0.210 0.021 -0.211 0.022 -0.211 0.022 -0.208 0.033 -0.221 0.026     

5th or above 0.053 0.633 0.050 0.660 0.050 0.660 0.009 0.949 -0.030 0.833     

Region                         

North ref   ref   ref   ref   ref       

           Central 0.235 0.135 0.209 0.187 0.209 0.187     0.175 0.274     

            South 0.320 0.054 0.295 0.075 0.295 0.075     0.265 0.114     

Sex of household head                         

Male                 ref       

Female                 0.032 0.696     

Anaemia                         

           Not anaemic ref                      

           Anaemic                 -0.051 0.501     

Religion                         
   

Protestant ref                       
          

Catholic             0.228 0.045     
            

Muslim             0.005 0.974     
            

Other             0.015 0.870     

Maternal age                         

>20 years ref                      

            20-34 years             -0.013 0.934 -0.021 0.895     

           35-39 years             0.038 0.845 0.029 0.884     

 

 

 

Table 8.   Prediction factors (factors identified by all variable selection methods) for 

stunting. 

 

intercept and variable common variable model 

  coefficient p-value 
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Intercept -0.705 0.004 

Wealth index     

Poorest ref   

            Poorer -0.127 0.201 

           Middle -0.261 0.012 

            Richer -0.522 <0.001 

            Richest -0.808 <0.001 

Age of child     

 0-6 months ref   

           6-18 months 0.547 <0.001 

            Above 18 months 1.012 <0.001 

Household size     

   Small ref   

            Medium 0.061 0.521 

            Large -0.071 0.507 

Type of birth     

Singleton     

       Multiple 1.068 <0.001 

Birth weight of the child     

Low birth weight ref   

Normal birth weight -0.540 <0.001 

 

 4.8.  Variable Importance 

To help understand the results of the developed models, like in any other machine learning 

models, variable importance measures were computed. The graphs below present the overall 

variable importance of the models fitted using variables selected by the different variable 

selection methods.  
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4.8.1. Variable Importance for the Backward Model 

As indicated in Figure 2, the age of a child has the largest contribution to the model seconded by 

the birth weight of the child. The type of birth, wealth index, ethnicity, body mass index of the 

mother, sex of the child, number of under-five children, birth order, and location are among the 

top ten important variables selected via the backward elimination method.     

  

 

Figure 2 Overall variable importance for top 10 variables: (A) are variables selected by the 

backward algorithm, (B) variables selected by the forward algorithm and (C) variables 

selected by the stepwise algorithm. 

 

 

Figure 3: Overall variable importance for top 10 variables: (D) are variables selected by 

the LASSO algorithm, (E) variables selected by Random Forest algorithm and (F) 

variables selected by judgement. 
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4.8.2. Variable Importance for the Forward Model 

Figure 2 (B) presents and ranks the variables that were selected using the forward variable 

selection algorithm. Like in backward variable selection the age of the child, birth weight, type 

of birth, wealth index, ethnicity, body mass index, sex of the child, number of under-five 

children, birth order and distance to health facility are the top ten important predictors.   

 

 4.8.3 Variable Importance for the Stepwise Model 

The variables selected using the stepwise algorithm are identical to those selected via the forward 

variable selection algorithm. The graph in Figure 2 (C) ranks, the age of the child, birth weight, 

type of birth, wealth index, ethnicity, body mass index, sex of the child, number of under-five 

children, birth order and distance to a health facility as the top ten important predictors. 

 

4.8.4. Variable Importance for the LASSO  

The largest number of predictors were selected using LASSO variable selection algorithm. 

Twenty predictors were selected and using variable importance measures, the rankings are as 

presented in the graph, Figure 3 (E). As indicated in this graph the best three variables are the 

age of the child, birth weight and type of birth just like the other algorithms above.  

 

4.8.5. Variable Importance for the Random Forest 

Using the predictors selected by the random forest-based algorithm, Figure 3 (D), the ranking of 

variable importance measures is not very different from the rankings obtained in the other 

algorithms. The age of the child, birth weight of the child and type of birth are still ranked as the 

top three in terms of contribution to the predictive model. The Boruta algorithm has selected the 

fewest number of predictors, ten compared to the other algorithms. 

 

4.8.6. Variable Importance for the Judgement Model 

Another model was fitted using variables selected using the researcher’s judgement. Ten 

predictors were incorporated into the model and were chosen based on how many articles among 

those that were reviewed identified them as statistically significant predictors of stunting. 

Importance scores of the variables were computed and presented in the graph, Figure 3 (F).  
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4.9.  Model Evaluation and Performance  

The models were constructed using the selected predictors of stunting which were selected using 

backward elimination, forward selection, stepwise selection, random forest-based algorithm 

(Boruta), LASSO variable selection algorithm and judgment selection method. To further 

investigate the performance of the models obtained from different sets of variables, the study 

estimated cut-off points using the SpEqualSe method implemented in the OptimalCutpoins 

package in R. The cutoff points were estimated using the training data set.  The analysis used the 

estimated cutoff points on the fitted logistic regression models to the test set and obtained several 

performance measures with each estimated cutoff point. Most often a default cut point of 0.5 is 

used in research studies ( (Hasegawa, Ito, & Yamauchi, 2017); ( Mukuku, et al., 2019); (van den 

Brink, et al., 2020)). For comparison purposes, the study also includes results obtained from 

using the cutoff point of 0.5 from the Bayes rule, see Table 9. 

 

 

 

 

 

 

Table 9. Summary of probability score from the selected model (Judgement model). 

 

Mean Median Range 

0.36 0.35 0.74 

 

 

Table 10. Model performance measures using a cut-off point of 0.5 on test data. 

  
 Cut 

point 
 AUC (95% CI) 

Sensitivit

y 

 

Specificit

y 

 

Misclassificatio

n error 

  

Accurac

y 

Model 1 0.5 0.63(0.59-0.66) 0.34 0.81 0.35 0.65 

Model 2 0.5 0.59(0.56 -0.63) 0.27 0.83 0.37 0.64 

Model 3 0.5 0.59(0.56 -0.63) 0.27 0.83 0.37 0.64 
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Model 4 0.5 0.57(0.53 -0.61) 0.25 0.80 0.39 0.61 

Model 5 0.5 0.62(0.59-0.66) 0.18 0.91 0.34 0.66 

Model 6 0.5 0.64(0.60-0.67) 0.17 0.93 0.33 0.67 

Model 7 0.5 0.63(0.59-0.66) 0.15 0.93 0.34 0.66 

Model 1 was constructed using the variables selected by backward variable selection algorithms. Model 2 was constructed using 

the variables selected by forward variable selection algorithms. Model 3 was constructed using the variables selected by stepwise 

variable selection algorithms. Model 4 was constructed using the variables selected by random forest variable selection 

algorithms. Model 5 was constructed using the variables selected by LASSO variable selection algorithms. Model 6 was 

constructed using the variables selected by judgement. Model 7 was constructed using the variables that were common to the 6 

models. 

 

In the study, the performance estimates based on the cutoff point of 0.5 do well in terms of 

specificity, but all have poor sensitivity (Table 10.). The estimated cutoff points for each model 

seek an equilibrium between sensitivity and specificity. This is important because in this study 

the researchers were more interested in detecting a stunted child than finding a non-stunted child. 

Hence more attention is paid to sensitivity than specificity. 

 

Training a model is the first step in making good predictions, however identifying how well the 

predictive power is, is a different question. To conclude if our trained model has good predictive 

power, the research simply used the trained model and predicted the response for the test data. 

These predictions were then used to compare with the true response variable. As expected, the 

models generally performed well when tested against the training dataset, simply because the 

error is underestimated by using the data that the model has seen as depicted in Appendix 1. The 

model fitted using the variables selected by the LASSO method has a better performance 

compared to other models, AUC of 67% (95% CI: 65-69). However, the true performance of the 

selected models was eventually determined by using the data (test data) that the trained model 

had not seen. The ROC curves were obtained by sensitivity versus the 1-specificity. The AUC 

results using the testing data set are tabulated in Table 11. Below 

 

Table 11.  Model performance measures using estimated cutoff points on test data. 

  Cut point AUC (95% CI) Sensitivity Specificity 
Misclassificatio
n error 

Accuracy 

Model 1 0.36 0.63(0.59-0.66) 0.68 (0.62 - 0.73) 0.48 (0.44 - 0.52) 0.45 0.55 

Model 2 0.36 0.59(0.56 -0.63) 0.66 (0.60 - 0.71) 0.48 (0.44 - 0.51)             0.46 0.54 
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Model 3 0.36 0.59(0.56 -0.63) 0.66 (0.60 - 0.71) 0.48 (0.44 - 0.51)             0.46 0.54 

Model 4 0.37 0.57(0.53 -0.61) 0.68 (0.62 - 0.73) 0.45 (0.41- 0.48)   0.48 0.53 

Model 5 0.37 0.62(0.59-0.66) 0.52 (0.47- 0.58) 0.64 (0.60 - 0.68) 0.4  0.6 

Model 6 0.37 0.64(0.60-0.67) 0.61 (0.56 - 0.66) 0.60 (0.56 - 0.63) 0.4  0.6 

Model 7 0.37 0.63(0.59-0.66) 0.63 (0.58 - 0.68) 0.55- (0.51- 0.59) 0.42 0.58 

Model 1 was constructed using the variables selected by backward variable selection algorithms. Model 2 was 

constructed using the variables selected by forward variable selection algorithms. Model 3 was constructed using the 

variables selected by stepwise variable selection algorithms. Model 4 was constructed using the variables selected by 

random forest variable selection algorithms. Model 5 was constructed using the variables selected by LASSO variable 

selection algorithms. Model 6 was constructed using the variables selected by judgement. Model 7 was constructed using 

the variables that were common to the 6 models. 

 

From Table 11. above, the logistic model from each set of selected variables yields quite similar 

performance. Nevertheless, the final model is the one with the largest AUC or C-statistic, which 

is the model fitted using a set of variables determined by the judgement method with an AUC of 

64% (95% CI: 60-67%), the accuracy of 60% and sensitivity of 61% and specificity of 60%. The 

sensitivity and specificity indicate that 61% of the children who had a stunting condition and 

60% of the children who did not have a stunting condition were correctly classified by the 

model. The confusion matrix for the best model is presented in Table 12 below. 

 

 

 

 

Table 12. Confusion Matrix indicate the performance of the best model at the selected 

probability cut point. 

  Predicted  

                  Not stunted Stunted All 

Actual 

Not stunted 385 261 646 

stunted 132 208 340 

All 517 469 986 

 

 

The Confusion matrix indicates the performance of a classifier on stunted children and those who 
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are not stunted. The confusion matrix depends on the choice of the probability cutoff point. The 

research used the best-selected probability cutoff point of 0.37. The model is slightly better at 

predicting stunted class with a recall value of 0.61. 

 

Table 13. Performance of the selected model after adjusting for sex and residence 

 Sex of a child  Residence 

              Female               Male                   Urban                    Rural 

AUC 

(95% CI) 
0.64 (0.59-0.70) 0.63 (0.58 -0.68)  0.67(0.58-0.76) 0.63 (0.59 - 0.67) 

Sensitivity 

(%) 
0.86 0.79  0.62 0.7 

Specificity 

(%) 
0.26 0.27  0.59 0.45 

 

 

The model based on risk factors determined by judgement has shown to be a predictive tool that 

displays a good ability to discriminate between stunted children and non-stunted children, 

particularly in children dwelling in urban areas (AUC=67% (95% CI: 58-76% in children 

dwelling in urban versus AUC=63% (95% CI: 59-67 in children dwelling in rural areas). 

Accordingly, children dwelling in urban areas, with a probability value higher than or equal to 

0.37 were identified as stunted. Using this cut-off point, 62% of children residing in urban areas 

who were stunted and 59% of children residing in urban locations who were not stunted, were 

correctly classified. There is a small difference in the model’s capacity to classify between 

stunted children and non-stunted children when gender was considered (AUC=64% (95% CI: 59-

70%) in female children versus (AUC=63% (95% CI:58-68%) in male children. 

The findings of this study show that the six prediction models have a better discrimination ability 

compared to a random classifier as indicated by the ROC curves in Figure 4. below. 
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Figure 4.  Comparing discrimination of the models fitted using variables selected by the 

different methods. 

 

 

 

 

 

 

 

 

CHAPTER 5  

DISCUSSION, CONCLUSION AND RECOMMENDATIONS 

 

5.1.  Discussion 

The primary objective of the study was to create and validate a child stunting prediction score 
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based on the best predictive model in Malawi. A child stunting prediction score may help 

decision-makers implement tailor-made interventions to help in achieving a reduction of stunting 

in Malawi. It was based on predictor variables obtained from fitting a multivariate logistic 

regression model to child stunting applying data obtained from the 2015-16 MDHS. Using six 

variable selection methods, namely backward, forward, stepwise, random forest, LASSO, and 

judgment, the study identified nine easily measured key predictors of child stunting. These 

included the age of the child, the weight of the child at birth, type of birth, sex of the child, 

wealth index category of the household, number of under-five children in the household, 

location, and maternal education. The best predictive model was based on risk factors 

determined by judgment methods, which had AUROC   of 65% (95% CI: 64%-67%) and 64% 

(95% CI: 60%-67%) in the training data set and the testing data set, respectively. Based on the 

common risk factors, identified by all the feature selection algorithms, the predictive ability was 

62% (95% CI: 59.0%-66.0%). For children residing in urban areas, the AUROC was 67% (95% 

CI: 58-76%) while for the children living in rural areas, AUROC was 63% (95% CI: 59-67).  

Although many studies have identified determinants of stunting, a sparse number of studies have 

focused on the explicit creation and evaluation of risk prediction models designed to detect 

children at a high risk of stunting. One such study was carried out by Hasegawa et Al., 2017, in 

Zambia. The predictive tool that the study developed was aimed at predicting malnourishment in 

young children. It used maternal age, weight-for-age z-score status, birth weight, feeding status, 

history of sibling death, multiple births, and maternal education level as important predictors. 

However, their study differs from this study in that the tool was developed using data collected 

from one health facility in rural location which limits its generalizability. The Lives Saved Tool 

has been in use to approximate the influence of specific modifications in important interventions 

on the decrease of stunting in children less than five years old. Many interventions that influence 

stunting, both directly and indirectly, have been identified by this tool.  Zinc supplementation, 

education on suitable complementary feeding, and giving supplementary food are some of the 

interventions that are included in this tool ( Hanieh, et al., 2019). Nevertheless, this study’s 

predictive model distinguishes itself from the Lives Saved Tool by its inability to predict which 

children are likely to be stunted. In the investigation implemented by Hanieh et al. (2019), they 

constructed and outwardly verified a predictive model to forecast the hazard of stunting when 

preschool children reach 3 years of age. Their final model contained very important predictors, 
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which consisted of the height of both the father and mother, the weekly weight gain of the 

mother during pregnancy, the sex of the infant, the gestational age at birth, as well as the weight 

and length of the infant at 6 months of age. This study differed in the sense that the model was 

specifically developed and validated within a rural context, excluding urban areas and other 

regions. In addition, the model had limitations in predicting all children who were vulnerable to 

stunting, thereby constraining its utility among children aged over 3 years. 

The method of choosing the probability cut points influences the predictive ability of the model. 

The cost of wrongly classifying those that have the disease (false negative) and those that do not 

have the disease (false positive) has informed the choice of the appropriate method of choosing 

the cut points for the classifier’s scores (Ferri, Orallo, & Flach, 2019). Sometimes it is important 

to choose a method that gives high sensitivity and specificity ( Bewick, Cheek, & Ball, 2004). 

During the selection of probability thresholds, a trade-off is made between the false positive rate 

(FPR) and the false negative rate (FNR). This is perceived as the objective function of the model, 

wherein the target is to reduce the number of errors, or the cost incurred. In general, there is a 

tradeoff between specificity and sensitivity, and a decision must be made based on their relative 

importance ( Bewick, Cheek, & Ball, 2004). The method of selecting the cut points must take 

this into account. It is important to evaluate the efficiency of a model at different cut points but 

assessing the model at its optimal cut point is also desirable. The ROC curves presented in 

Figure 4.4 demonstrate the tradeoff between the two measures at various cut points in this study. 

The metrics were calculated for assessing the performance of the predictive model using cut-

points derived based on the SpEqualSe method implemented in the OptimalCutpoins package 

in R. This method hinges on the principles of balancing sensitivity and specificity with the 

assumption that the expenses associated with false positives and false negatives are of equal 

value. This is one of the data-driven methods of choosing optimal cut points and their use in 

studies with small sample sizes may identify accurate optimal cut points and overstate accuracy 

estimates ( Bhandari, et al., 2021). However, this study used a big sample size which might have 

avoided what Bhandari observed. There are other data-driven methods of selecting cut points that 

can also be used in choosing the optimal thresholds such as the Youden’s Index (J) (Lai, Tian, & 

Schisterman). Xu et al.,2019 used Youden’s Index to decide the thresholds for predicting AKI in 

their model. The Youden’s Index (J) is defined as the sum of Sensitivity and Specificity minus 

one (Jc = SEc + SPc- 1). The method (SpEqualSe) used in this study does not differ from 
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Youden’s Index since both use criteria built on sensitivity and specificity measures ( López-

Ratón, Rodríguez-Álvarez, Cadarso-Suárez, & Gude-Sampedro, 2014). Incorporating 

predetermined cut points, when accessible, would enhance the credibility of a classification 

model (Ewald, 2006). These pre-specified cut points are the ones that are predetermined by using 

previous studies.  

There were certain limitations in the study that are worth mentioning and discussing. To begin 

with, the study encountered missing values for certain potential predictors, including nutritional 

variables, which could introduce selection bias. In addition, the study did not consider the 

clustering and weighting of the DHS data, which may have affected the estimated probabilities 

of being stunted by not being representative. The data used for score development and validation 

were exclusively obtained from Malawi, which may potentially restrict the generalizability of the 

risk score to other regions within Sub-Saharan Africa (SSA). This study did not consider LARS 

due to the unavailability of the software package in R to implement it as a variable selection 

method for nonlinear models. Another limitation is that the study assumed that a logistic link 

function will provide a better predictive model. Alternatively, a probit link function or 

complementary log-log link function could have been employed. The method of selecting the 

probability cut points that were used in the study is also another limitation. There are other 

robust approaches for selecting decision boundaries that could have been used. 

The effectiveness of this study’s approach is rooted in the fact that using nationally 

representative data (MDHS), the study investigated an extensive array of potential predictors and 

successfully identified a concise collection of major variables. These variables are commonly 

assessed in primary healthcare settings in numerous countries or can be readily obtained. Even 

though factors affecting stunting that have been reported in the literature vary by many attributes 

such as type of study, region and sample size, and the ones mentioned above, considerable key 

findings have surfaced that offer support for the predictive variables that the model has 

identified. However, this might have affected the derived scores since some variables were not 

captured in MDHS and some had missing values and as such, they were not used in developing 

the predictive model.  

The discriminative ability of this study’s model seems to be different depending on other 
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characteristics such as the residence type of the child. The change in the performance of the 

model between urban and rural populations is largely due to differences in sample sizes of these 

two categories in the data set.  

The study proposes a similar research area but uses simulated data with sensitivity analysis to 

improve the predictive ability. Future investigations should also strive to replicate the findings of 

this study by employing alternative machine learning algorithms for binary classification. There 

is also a need to explore other variable selection methods such as LARS. 

 5.2.  Conclusions 

Though the various selected predictors and models had an unsatisfactory performance at 

distinguishing between stunted and non-stunted children, this work has shown the potential of 

using a tool that combines purported child stunting predictors. The study’s approach offers a 

direct estimate of child stunting using a single summary measure, rather than working with 

multiple predictors of child stunting.  

 

The findings of the systematic review have shown that determinants of stunting are multifaceted 

and interdependent. The study has identified many predictors of stunting, but the dominant ones 

are the weight of the child at birth, type of birth, sex of the child, wealth index category of the 

household, number of under-five children in the household, location, maternal education, family 

size, diarrhea, birth order, distance to facility and body mass index. 

 

The prediction model shows that the predictors of stunting for children are the weight of the 

child at birth, type of birth, sex of the child, wealth index category of the household, number of 

under-five children in the household, location, and maternal education. The precision of the 

scoring system in predicting the likelihood of children under the age of five experiencing 

stunting in Malawi was 60% with a sensitivity of 61%, specificity of 60% and AUC of 64% 

(95% CI: 60-67%). Stunting cases occur usually because this disease is not recognized by the 

public at an early stage. The research has developed a prediction model that has the possibility of 

helping in understanding what may influence child stunting and may help policymakers to focus 

on evidence-based interventions that target specific predictors in low-resource countries. The 

researchers believe that the predictive model will empower public health practitioners at the 
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community level or in hospitals to quickly measure the projected subsequent likelihood of 

stunting in under-five children. By employing early protective measures during the critical 

developmental stage of the first five years of life, there is a chance to intervene and alter the 

growth path before it becomes irreversible. This approach permits timely action within the 

optimal window of opportunity, where the most significant impact is expected to be attained. 

 

5.3 Recommendations 

The risk predictive model for child stunting is recommended for children aged 0-59 years in 

Malawi and similar settings in sub-Saharan Africa.  It is necessary to embrace a comprehensive 

community-oriented strategy that addresses the instantaneous and fundamental factors 

contributing to child malnutrition. This strategy should encompass counselling phases for 

mothers to enhance infant feeding behaviours and maternal dietary intake as well as health 

promotion initiatives to raise awareness about the significance of appropriate public health 

measures for cleanliness and hygiene.  
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APPENDICES 

 

Appendix 1: Model performance measures using estimated cutoff points on the training set. 

  
          Cut point               AUC (95% CI)       Sensitivity              Specificity 

Misclassification 

error 

                  

Predictive 

value 

Model 1 0.36 0.66(0.64-0.68) 0.62 0.62 0.39 0.61 

Model 2 0.36 0.66(0.65-0.68) 0.62 0.62 0.38 0.62 

Model 3 0.36 0.66(0.65-0.68) 0.62 0.62 0.38 0.62 

Model 4 0.37 0.65(0.64-0.67) 0.61 0.61 0.39 0.61 

Model 5 0.37 0.67(0.65-0.69) 0.63 0.63 0.37 0.63 

Model 6 0.37 0.65(0.64-0.67) 0.61 0.60 0.39 0.61 

Model 7 0.37 0.64(0.62-0.66) 0.6 0.61 0.39 0.61 

Model 1 was constructed using the variables selected by backward variable selection algorithms. Model 2 was 

constructed using the variables selected by forward variable selection algorithms. Model 3 was constructed using the 

variables selected by stepwise variable selection algorithms. Model 4 was constructed using the variables selected by 

random forest variable selection algorithms. Model 5 was constructed using the variables selected by LASSO variable 

selection algorithms. Model 6 was constructed using the variables selected by judgement. Model 7 was constructed using 

the variables that were common to the 6 models. 
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Appendix 2: Analysis: Stata commands (Data cleaning) 

clear all 

cd c:\thesis 

set more off 

cap log close 

log using thesis_res2.log,append 

use "C:\Users\Jonathan Mkungudza\Documents\MASTERS_BIOSTATISTICS_updated\MDHS_DATA\MWKR7ADT\MWK 

> R7AFL.DTA" 

***stunting*** 

recode hw70(min/-200=1 "stunted") (-200/9990=0 "not stunetd") (else=.), gen(stunting) 

drop if stunting==. 

***mother's age ***  

rename v012 age_women  

recode age_women (0/19=1 ">20 yrs") (20/34=2 "20-34 yrs") (35/49 =3 "35-39 yrs"), 

generate(agegrp1) 

tab agegrp1,m 

***sex of the child*** 

rename b4 child_sex 

tab child_sex 

***sex of household head *** 

rename v151 sex_hh 

tab sex_hh 

 

***region***  

tab v024 

rename v024 region 

 

***location*** 

tab v025 

rename v025 location 

  

***age of household head (v152)*** 

gen age_HH2=v152 

replace age_HH2=999 if v152==98 

replace age_HH2=. if age_HH2==999 

recode age_HH2 (0/34=1 ">35 yrs") (35/max=2 "35+ yrs"), generate(age_hhgrp) 

tab age_hhgrp,m 

 

***Number of underfive children 

rename v137 childnumb_und5 

recode childnumb_und5 (0/1=1 "<=1 children") (2/max=2 ">=2 children"), generate(Numb_under5) 

tab Numb_under5,m  
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*** mode of delivery*** 

rename m17 mode_del 

tab mode_del,m 

 

***wealth index*** 

rename v190 wealth_index 

tab1 wealth_index,m   

 

***Ethnicity*** 

gen ethnicity=v131  

replace ethnicity=1 if ethnicity==1 |ethnicity==10  

replace ethnicity=2 if ethnicity==2 |ethnicity==4 |ethnicity==7 

replace ethnicity=3 if ethnicity==3 |ethnicity==9 |ethnicity==6 

replace ethnicity=4 if ethnicity==8 

replace ethnicity=6 if ethnicity==96 

label define ethnicity 1"Chewa" 2"Tumbuka" 3"Lomwe" 4"Ngoni" 5"Yao" 6"other"  

label values ethnicity ethnicity 

tab ethnicity,m 

 

***Diarrhea 

rename h11 diarrhea 

replace diarrhea=. if diarrhea==8 

replace diarrhea=1 if diarrhea==2 

tab diarrhea,m 

 

***Number of ANC Visits*** 

gen ANCvisit= m14  

replace ANCvisit=. if m14==98 

recode ANCvisit (0/3=1 "<= 3")(4/max=2 "4 above"),gen(ANC_VISGRP) 

tab ANC_VISGRP,m ///Jonathan: thinking of excluding this from analysis since 1045 participants 

have missing records 

 

***Child age in months*** 

rename b19 curr_agemonth 

recode curr_agemonth (0/5=1 "0-6 months")(6/18=2 "6-18 months")(19/max=4 "above 18 months"),gen 

(age_childgrp) 

tab age_childgrp,m 

 

***Family size*** 

rename v136 hh_meb_nu 

recode hh_meb_nu (0/3=1 "small")(4/6=2 "medium")(7/max=3 "large"),gen(fam_size) 

tab fam_size,m 

 

***Body mass index*** 

gen BM_index=v445/100  

recode BM_index (0/18.49=1 "<18.5")(18.5/24.99=2 "18.5-24")(25/max=3 ">=25"),gen(BMI_GRP) 
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tab BMI_GRP,m 

 

***marital status*** 

gen mar_status=v501   

recode mar_status (0=0 "single")(1/2=1 "married") (3 4 5 =2 "ever married"), gen(marital_status) 

tab marital_status,m 

 

***place of delivery*** 

rename m15 del_place 

recode del_place(11/12 96 =1 "home")(21 22 23 26 31 32 33 34=0 "health facility"), gen 

(place_deliver) 

label var place_deliver "place of delivery" 

tab place_deliver,m  

 

***distance to health facility*** 

recode v467d (1=1 "long distance")(2=2 "short distance"), gen(dist_facility) 

label var dist_facility "distance to a health facility" 

tab dist_facility,m 

 

***delivery assistance*** 

gen del_assistance=. 

replace del_assistance=1 if m3a==1 |m3b==1|m3h ==1  

replace del_assistance=2 if m3g ==1|m3i ==1|m3k ==1|m3n ==1 

label define del_assistance 1"health personnel" 2"not health personnel" 

label values del_assistance del_assistance 

tab del_assistance,m 

 

***birth number*** 

recode b0 (0=0 "singleton" )(1 2 3=1 "multiple"),gen(birth_typ)  

tab birth_typ,m 

 

***Birth order*** 

recode bord (1/1=1 "first_born")(2/4=2 "2nd-4th")(5/max=3 "5th or above"),gen(birth_order) 

tab birth_order 

 

***education of the mother*** 

recode v106 (0=0 "No education")(1=1 "Primary")(2 3=2 "Secondary and above"),gen(meducation) 

tab meducation,m 

 

***Mother's religion*** 

 gen religion_cat=v130 

 replace religion_cat=1 if v130==2 | v130==3 |v130==4 

 replace religion_cat=2 if v130==1 

 replace religion_cat=3 if v130==6 

 replace religion_cat=4 if v130==5  

 replace religion_cat=. if v130==7 |v130==96 

 label define religion_cat  1"Protestant" 2"catholic" 3"muslim" 4"other" 
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 label values religion_cat religion_cat 

 tab religion_cat,m 

  

 

***/birthweight*** 

gen brth_weight=m19 

replace brth_weight=. if m19==9996 | m19==9998  

recode brth_weight (0/2499=1 "Low birth")(2500/max=2 "Normal birth"),gen(brth_weightgrp) 

replace brth_weightgrp=2 if m18==1 | m18==2 |m18==3 & brth_weight==.  

replace brth_weightgrp=1 if m18==4 | m18==5 & brth_weight==. 

tab brth_weightgrp 

 

 

gen cough_fever=. 

replace cough_fever=0 if h31==0 |h22==0 

replace cough_fever=1 if h31==1 |h22==1 

label define cough_fever 0"No" 1"Yes"  

label values cough_fever cough_fever   

tab cough_fever,m  

  

*** Mother’s occupation*** 

recode v717 (0=0 "Not working")(4 5=1 "Agricultural worker") (1 8=2 

"Proff/technical/managerial")(3 7=3 "Sales and services")(6 9=4 "Domestic and unskilled"), 

gen(occu_cat) 

 tab occu_cat,m 

  

 ***child's anemia level***  

 recode v457 (4=0 "Not anemic")(1 2 3=1 "Anemic"), gen (anemic_grp) 

 tab anemic_grp,m 

   

drop if anemic_grp==. 

drop if brth_weightgrp==. 

drop if cough_fever==. 

drop if religion_cat==. 

drop if BMI_GRP==. 

drop if diarrhea==. 

drop if mode_del==. 

drop if age_hhgrp==. 

 

tab anemic_grp,m 

tab brth_weightgrp,m 

tab cough_fever,m 

tab religion_cat,m 

tab BMI_GRP,m 

tab diarrhea,m 

tab mode_del,m 

tab age_hhgrp,m  
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keep stunting agegrp1 region ANC_VISGRP sex_hh age_hhgrp child_sex age_childgrp BMI_GRP 

ethnicity meducation location Numb_under5 marital_status fam_size occu_cat brth_weightgrp 

mode_del diarrhea anemic_grp place_deliver birth_typ cough_fever dist_facility 

wealth_index del_assistance religion_cat  birth_order 

 

tab1 stunting agegrp1 region ANC_VISGRP sex_hh age_hhgrp child_sex age_childgrp BMI_GRP 

ethnicity meducation location Numb_under5 marital_status fam_size occu_cat brth_weightgrp 

mode_del diarrhea anemic_grp place_deliver birth_typ cough_fever dist_facility 

wealth_index del_assistance religion_cat  birth_order,m 

 

save "C:\Users\jmkungudza\Documents\MASTERS_BIOSTATISTICS_updated\DATA\prediction\data.dta" 

 

 

y 
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Appendix 2: R Script (Model training and Evaluation) 

 

setwd ("~/MASTERS_BIOSTATISTICS_updated/DATA/prediction") 

data <- read.csv("~/MASTERS_BIOSTATISTICS_updated/DATA/prediction/Mydata.csv") 

 

data$stunting<-factor(data$stunting,level=c(0,1),labels=c("not stunted", "stunted")) 

 

 

data$wealth_index<-as.factor(data$wealth_index) 

data$child_sex<-as.factor(data$child_sex) 

data$diarrhea<-as.factor(data$diarrhea) 

data$Numb_under5<-as.factor(data$Numb_under5) 

data$age_childgrp<-as.factor(data$age_childgrp) 

data$fam_size<-as.factor(data$fam_size) 

data$BMI_GRP<-as.factor(data$BMI_GRP) 

data$marital_status<-as.factor(data$marital_status) 

data$dist_facility<-as.factor(data$dist_facility) 

data$del_assistance<-as.factor(data$del_assistance) 

data$birth_typ<-as.factor(data$birth_typ) 

data$meducation<-as.factor(data$meducation) 

data$location<-as.factor(data$location) 

data$ethnicity<-as.factor(data$ethnicity) 

 

data$agegrp1<-as.factor(data$agegrp1) 

data$mode_del<-as.factor(data$mode_del) 

 

data$age_hhgrp<-as.factor(data$age_hhgrp) 

data$place_deliver<-as.factor(data$place_deliver) 

data$birth_order<-as.factor(data$birth_order) 

 

data$religion_cat<-as.factor(data$religion_cat) 

data$brth_weightgrp<-as.factor(data$brth_weightgrp) 

data$cough_fever<-as.factor(data$cough_fever) 

data$occu_cat<-as.factor(data$occu_cat) 

data$anemic_grp<-as.factor(data$anemic_grp) 

data$region<-as.factor(data$region) 

 

 

 

set.seed (123) 

ind<-sample(2,nrow(data),replace=T,prob=c(0.8,0.2)) 

traindata<-data [ind==1, ] 
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testdata<-data [ind==2, ] 

 

 

str(data) 

#Required packages 

install.packages("InformationValue") 

install.packages("pROC") 

install.packages("ggpubr") 

install.packages("OptimalCutpoints") 

install.packages("dplyr") 

library("dplyr") 

library("OptimalCutpoints") 

library(MASS) 

library(pROC) 

library(ROCR) 

library(caret) 

library(InformationValue) 

library(bootStepAIC) 

library(Boruta) 

library(randomForest) 

library(glmnet) 

library(ggplot2) 

library(ggpubr) 

 

 

table(traindata$stunting) 

table(testdata$stunting) 

table(data$stunting) 

 

prop.test(x=1771,n=4976) 

prop.test(x=1431, n=3990) 

prop.test(x=340, n=986) 

 

 

#Backward variable selection method 

model_All<-glm(stunting ~.,data=traindata, family="binomial") 

mod_step<-stepAIC(model_All,direction="backward",trace=FALSE) 

mod_step 

 

model_boot<-boot.stepAIC(model_All,traindata,B=50) 

model_boot 

 

#Forward variable selection method 

fitAll<-glm(stunting~.,data=traindata,family="binomial") 

model_intecept<-glm(stunting~1,data=traindata,family="binomial") 

summary(model_intecept) 

mod_stepFo<-stepAIC(model_intecept,direction="forward",scope=formula(fitAll)) 
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summary(mod_stepFo) 

 

 

#stepwise variable selection method 

mod_stepwise<-stepAIC(model_intecept,direction="both",scope=formula(fitAll)) 

summary(mod_stepwise) 

 

#Boruta:Random forest variable selection 

boruta <-Boruta(stunting~.,data=traindata,doTrace=2,maxRuns=500) 

print(boruta) 

plot(boruta,las=2,cex.axis=0.7) 

 

#getting selected variables 

getNonRejectedFormula(boruta) 

 

 

# 5) Training LASSO model 

train_x<-model.matrix(stunting~ .,data=traindata)[, -8] 

train_y<-traindata[,"stunting"] 

 

test_x<-model.matrix(stunting~ .,data=testdata)[, -8] 

test_y<-testdata[,"stunting"] 

 

#adjust x,y size of plot 

options(repr.plot.width=10,repr.plot.height=8) 

mod_lasso<-glmnet( 

  x=train_x, 

  y=train_y, 

  family="binomial", 

  alpha=1 

) 

 

 

 

#CROSS VALIDATION 

set.seed(2345) 

mod_lasso_cv<-cv.glmnet( 

  x=train_x, 

  y=train_y, 

  type.measure="class", 

  family="binomial", 

  alpha=1 

) 

 

#plot results of cv 

par(mfrow=c(1,2)) 

plot(mod_lasso_cv, main="Misclsification error curve") 
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plot(mod_lasso, xvar="lambda", main="LASSO coefficient profile") 

 

(best.lambda<-mod_lasso_cv$lambda.min) 

 

#final variable selected with the best lambda 

lasso_model<-glmnet(x=train_x,y=train_y,family="binomial",alpha=1,lambda=best.lambda) 

lasso_model$beta 

 

 

#Training logistic models 

 

# 1)fit the selected model (AIC_backward) 

model_backward<-glm(formula=stunting ~ region + location + wealth_index + diarrhea +  

                      Numb_under5 + ethnicity + age_childgrp + fam_size + BMI_GRP +  

                      dist_facility + birth_typ + birth_order + brth_weightgrp 

                    ,data=traindata,family="binomial") 

summary(model_backward) 

 

# Estimating cutpoints on training data 

p<-predict(model_backward,newdata=traindata, type="response") 

 

 

traindata1 <- cbind(traindata, p) 

traindata1$stunting<- ifelse(traindata1$stunting=="stunted",1,0) 

cutpoint1<-optimal.cutpoints(X="p",status="stunting", 

tag.healthy=0,method=c("MaxSe"),data=traindata1, 

categorical.cov=NULL,pop.prev=NULL,control=control.cutpoints(),ci.fit=TRUE) 

 

 

summary(cutpoint1) 

 

 

# performance measure(ROC) on test data 

predicted<-predict(model_backward, newdata=testdata, type="response") 

 

pt<-predict(model_backward,newdata=testdata, type="response") 

pb <- prediction(pt, testdata$stunting) 

prfb <- performance(pb, measure = "tpr", x.measure = "fpr") 

 

#Cut off points at 0.5 

testdata$stunting<- ifelse(testdata$stunting=="stunted",1,0) 

confusionMatrix(testdata$stunting,predicted) 

misClassError(testdata$stunting,predicted) 

sensitivity(testdata$stunting,predicted) 

specificity(testdata$stunting,predicted) 

 

#Cut off points at 0.36 
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confusionMatrix(testdata$stunting,predicted,threshold=0.36) 

misClassError(testdata$stunting,predicted,threshold=0.36) 

sensitivity(testdata$stunting,predicted,threshold=0.36) 

specificity(testdata$stunting,predicted,threshold=0.36) 

 

auc <- performance(pb, measure = "auc") 

auc <- auc1@y.values[[1]] 

auc 

ci.auc(testdata$stunting, pt) 

 

V = caret::varImp(model_backward) 

 

ggplot2::ggplot(V, aes(x=reorder(rownames(V),Overall), y=Overall)) + 

  geom_point( color="blue", size=4, alpha=0.6)+ 

  geom_segment( aes(x=rownames(V), xend=rownames(V), y=0, yend=Overall),  

                color='skyblue') + 

  xlab('Variable')+ 

  ylab('Overall Importance (backward model)')+ 

  theme_light() + 

  coord_flip()  

 

# 2)fit the selected model (AIC_forward) 

model_forward<-glm(formula = stunting ~ age_childgrp + wealth_index + brth_weightgrp + birth_typ 

+  

                     BMI_GRP + child_sex + occu_cat + birth_order + Numb_under5 +  

                     fam_size + dist_facility + location + diarrhea + ethnicity +  

                     region, family = "binomial", data = traindata) 

summary(model_forward) 

 

# Estimating cutpoints on training data 

pf<-predict(model_forward,newdata=traindata, type="response") 

 

traindataf1 <- cbind(traindata, pf) 

traindataf1$stunting<- ifelse(traindataf1$stunting=="stunted",1,0) 

cutpointf1<-optimal.cutpoints(X="pf",status="stunting", 

tag.healthy=0,method=c("SpEqualSe"),data=traindataf1, 

categorical.cov=NULL,pop.prev=NULL,control=control.cutpoints(),ci.fit=TRUE) 

table(traindataf1$stunting) 

 

 

summary(cutpointf1) 

 

# ## performance measure(ROC) on test data 

predicted1<-predict(model_forward, newdata=testdata, type="response") 

 

pfo<-predict(model_forward,newdata=testdata, type="response") 

pfo1 <- prediction(pfo,testdata$stunting) 
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prfo1 <- performance(pfo1, measure = "tpr", x.measure = "fpr") 

 

#Cut off points at 0.5 

confusionMatrix(testdata$stunting,predicted1) 

misClassError(testdata$stunting,predicted1) 

sensitivity(testdata$stunting,predicted1) 

specificity(testdata$stunting,predicted1) 

 

#Cut off points at 0.36 

confusionMatrix(testdata$stunting,predicted1,threshold=0.36) 

misClassError(testdata$stunting,predicted1,threshold=0.36) 

sensitivity(testdata$stunting,predicted1,threshold=0.36) 

specificity(testdata$stunting,predicted1,threshold=0.36) 

 

auc1 <- performance(pfo1, measure = "auc") 

auc1 <- auc1@y.values[[1]] 

auc1 

ci.auc(testdata$stunting, pfo) 

 

B = caret::varImp(model_forward) 

 

ggplot2::ggplot(B, aes(x=reorder(rownames(B),Overall), y=Overall)) + 

  geom_point( color="blue", size=4, alpha=0.6)+ 

  geom_segment( aes(x=rownames(B), xend=rownames(B), y=0, yend=Overall),  

                color='skyblue') + 

  xlab('Variable')+ 

  ylab('Overall Importance (forward model)')+ 

  theme_light() + 

  coord_flip()  

 

 

# 3)fit the selected model (AIC_BOTH) 

model_stepwise<-glm(formula = stunting ~ age_childgrp + wealth_index + brth_weightgrp +  

                      birth_typ + BMI_GRP + child_sex + occu_cat + birth_order +  

                      Numb_under5 + fam_size + dist_facility + location + diarrhea +  

                      ethnicity + region, family = "binomial",  

                    data = traindata) 

 

summary(model_stepwise) 

 

 

# Estimating cutpoints on training data 

ps<-predict(model_stepwise,newdata=traindata, type="response") 

 

traindatas1 <- cbind(traindata, ps) 

traindatas1$stunting<- ifelse(traindatas1$stunting=="stunted",1,0) 

cutpoints1<-optimal.cutpoints(X="ps",status="stunting", 
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tag.healthy=0,method=c("SpEqualSe"),data=traindatas1, 

categorical.cov=NULL,pop.prev=NULL,control=control.cutpoints(),ci.fit=TRUE) 

table(traindatas1$stunting) 

 

 

summary(cutpoints1) 

 

## performance measure(ROC) on test data 

predicted2<-predict(model_stepwise, newdata=testdata, type="response") 

 

ps1<-predict(model_stepwise,newdata=testdata, type="response") 

ps2 <- prediction(ps1, testdata$stunting) 

psf2 <- performance(ps2, measure = "tpr", x.measure = "fpr") 

 

#Cut off points at 0.5 

confusionMatrix(testdata$stunting,predicted2) 

misClassError(testdata$stunting,predicted2) 

sensitivity(testdata$stunting,predicted2) 

specificity(testdata$stunting,predicted2) 

 

#Cut off points at 0.36 

confusionMatrix(testdata$stunting,predicted2,threshold=0.36) 

misClassError(testdata$stunting,predicted2,threshold=0.36) 

sensitivity(testdata$stunting,predicted2,threshold=0.36) 

specificity(testdata$stunting,predicted2,threshold=0.36) 

 

auc2 <- performance(ps2, measure = "auc") 

auc2 <- auc2@y.values[[1]] 

auc2 

ci.auc(testdata$stunting, ps2) 

 

 

# 4)Fitting selected model (RF_Logistic) 

 

rf_sel<-glm(formula=stunting ~ location + wealth_index + agegrp1 + age_hhgrp + age_childgrp +  

              fam_size + BMI_GRP + dist_facility + birth_typ + birth_order +  

              brth_weightgrp,family="binomial",data=traindata) 

summary(rf_sel) 

 

# Estimating cutpoints on training data 

prf<-predict(rf_sel,newdata=traindata, type="response") 

 

traindatar1 <- cbind(traindata, prf) 

traindatar1$stunting<- ifelse(traindatar1$stunting=="stunted",1,0) 

cutpointr1<-optimal.cutpoints(X="prf",status="stunting", 

tag.healthy=0,method=c("SpEqualSe"),data=traindatar1, 

categorical.cov=NULL,pop.prev=NULL,control=control.cutpoints(),ci.fit=TRUE) 
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table(traindatar1$stunting) 

 

 

summary(cutpointr1) 

 

## performance measure(ROC) on test data 

predicted23<-predict(rf_sel, newdata=testdata, type="response") 

 

p23<-predict(rf_sel,newdata=testdata, type="response") 

pr23 <- prediction(p23, testdata$stunting) 

prf23 <- performance(pr23, measure = "tpr", x.measure = "fpr") 

 

#Cut off points at 0.5 

confusionMatrix(testdata$stunting,predicted23) 

misClassError(testdata$stunting,predicted23) 

sensitivity(testdata$stunting,predicted23) 

specificity(testdata$stunting,predicted23 

 

#Cut off points at 0.37 

confusionMatrix(testdata$stunting,predicted23,threshold=0.37) 

misClassError(testdata$stunting,predicted23,threshold=0.37) 

sensitivity(testdata$stunting,predicted23,threshold=0.37) 

specificity(testdata$stunting,predicted23,threshold=0.37) 

 

auc23 <- performance(pr23, measure = "auc") 

auc23 <- auc23@y.values[[1]] 

auc23 

ci.auc(testdata$stunting, p23) 

 

#4)Fitting selected model (LASSO_Logistic) 

 

LASSO_sel<-glm(formula=stunting ~ location + wealth_index + agegrp1 + age_hhgrp + age_childgrp +  

                 fam_size + BMI_GRP + dist_facility + Numb_under5 + religion_cat + meducation + 

                 birth_typ + birth_order + region + diarrhea + occu_cat + anemic_grp + 

del_assistance + 

                 ethnicity + child_sex + sex_hh + 

                 brth_weightgrp,family="binomial",data=traindata) 

summary(LASSO_sel) 

 

# Estimating cutpoints on training data 

pl<-predict(LASSO_sel,newdata=traindata, type="response") 

 

traindatal1 <- cbind(traindata, pl) 

traindatal1$stunting<- ifelse(traindatal1$stunting=="stunted",1,0) 

cutpointl1<-optimal.cutpoints(X="pl",status="stunting", 

tag.healthy=0,method=c("SpEqualSe"),data=traindatal1, 

categorical.cov=NULL,pop.prev=NULL,control=control.cutpoints(),ci.fit=TRUE) 
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table(traindatal1$stunting) 

 

 

summary(cutpointl1) 

 

## performance measure(ROC) on test data 

predicted24<-predict(LASSO_sel, newdata=testdata, type="response") 

 

p24<-predict(LASSO_sel,newdata=testdata, type="response") 

pr24 <- prediction(p24, testdata$stunting) 

prf24 <- performance(pr24, measure = "tpr", x.measure = "fpr") 

 

#Cut off points at 0.5 

confusionMatrix(testdata$stunting,predicted24) 

misClassError(testdata$stunting,predicted24) 

sensitivity(testdata$stunting,predicted24) 

specificity(testdata$stunting,predicted24) 

 

#Cut off points at 0.37 

confusionMatrix(testdata$stunting,predicted24,threshold=0.37) 

misClassError(testdata$stunting,predicted24,threshold=0.37) 

sensitivity(testdata$stunting,predicted24,threshold=0.37) 

specificity(testdata$stunting,predicted24,threshold=0.37) 

 

auc24 <- performance(pr24, measure = "auc") 

auc24 <- auc24@y.values[[1]] 

auc24 

ci.auc(testdata$stunting, p24) 

 

#Model judgement  

 

model_judge<-glm(formula=stunting ~ location + wealth_index + child_sex +  age_childgrp +  

                   fam_size + Numb_under5 + meducation +  

                   birth_typ +  diarrhea  +  

             brth_weightgrp,family="binomial",data=traindata) 

 

summary(model_judge) 

ODDS<-exp(cbind("odds ratio"=coef(model_judge),confint.default(model_judge,level = 0.95))) 

print(ODDS) 

 

# Estimating cutpoints on training data 

pj<-predict(model_judge,newdata=traindata, type="response") 

 

traindataj1 <- cbind(traindata, pj) 

traindataj1$stunting<- ifelse(traindataj1$stunting=="stunted",1,0) 

cutpointj1<-optimal.cutpoints(X="pj",status="stunting", 

tag.healthy=0,method=c("SpEqualSe"),data=traindataj1, 
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categorical.cov=NULL,pop.prev=NULL,control=control.cutpoints(),ci.fit=TRUE) 

table(traindataj1$stunting) 

 

summary(cutpointj1) 

 

 

# performance measure(ROC) on test data 

predicted7<-predict(model_judge, newdata=testdata, type="response") 

 

p7<-predict(model_judge,newdata=testdata, type="response",threshold=0.37) 

pr7 <- prediction(p7, testdata$stunting) 

prf7 <- performance(pr7, measure = "tpr", x.measure = "fpr") 

 

#Cut off points at 0.5 

confusionMatrix(testdata$stunting,predicted7) 

misClassError(testdata$stunting,predicted7) 

sensitivity(testdata$stunting,predicted7) 

specificity(testdata$stunting,predicted7) 

 

#Cut off points at 0.37 

confusionMatrix(testdata$stunting,predicted7,threshold=0.37) 

misClassError(testdata$stunting,predicted7,threshold=0.37) 

sensitivity(testdata$stunting,predicted7,threshold=0.37) 

specificity(testdata$stunting,predicted7,threshold=0.37) 

 

auc7 <- performance(pr7, measure = "auc",threshold=0.37) 

auc7 <- auc7@y.values[[1]] 

auc7 

ci.auc(testdata$stunting, p7) 

 

 

#analysis by gender (male vs female) 

 

model_judge_gender<-glm(formula=stunting ~ location + wealth_index +  age_childgrp +  

                          fam_size + Numb_under5 + meducation +  

                          birth_typ +  diarrhea  +  

                          brth_weightgrp,family="binomial",data=traindata) 

 

pg<-predict(model_judge_gender,newdata=testdata, type="response") 

 

testdatag1 <- cbind(testdata, pg) 

testdatag1$stunting<- ifelse(testdatag1$stunting=="stunted",1,0) 

cutpointg1<-optimal.cutpoints(X="pg",status="stunting", 

tag.healthy=0,method=c("SpEqualSe"),data=testdatag1, 

categorical.cov="child_sex",pop.prev=NULL,control=control.cutpoints(),ci.fit=TRUE) 

 

summary(cutpointg1) 
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#analysis by location (rural vs urban) 

 

model_judge_loc<-glm(formula=stunting ~ child_sex + wealth_index +  age_childgrp +  

                       fam_size + Numb_under5 + meducation +  

                       birth_typ +  diarrhea  +  

                       brth_weightgrp,family="binomial",data=traindata) 

 

pl<-predict(model_judge_loc,newdata=testdata, type="response") 

 

testdatal1 <- cbind(testdata, pl) 

testdatal1$stunting<- ifelse(testdatal1$stunting=="stunted",1,0) 

cutpointl1<-optimal.cutpoints(X="pl",status="stunting", 

tag.healthy=0,method=c("SpEqualSe"),data=testdatal1, 

categorical.cov="location",pop.prev=NULL,control=control.cutpoints(),ci.fit=TRUE) 

 

summary(cutpointl1) 

 

 

 

#model fit_,common variable 

model_com<-glm(formula=stunting ~ wealth_index +  age_childgrp +  

                 fam_size + birth_typ + brth_weightgrp,family="binomial",data=traindata) 

 

summary(model_com) 

# Estimating cutpoints on training data 

pc<-predict(model_com,newdata=traindata, type="response") 

 

traindatac1 <- cbind(traindata, pc) 

traindatac1$stunting<- ifelse(traindatac1$stunting=="stunted",1,0) 

cutpointc1<-optimal.cutpoints(X="pc",status="stunting", 

tag.healthy=0,method=c("SpEqualSe"),data=traindatac1, 

categorical.cov=NULL,pop.prev=NULL,control=control.cutpoints(),ci.fit=TRUE) 

table(traindatac1$stunting) 

 

 

summary(cutpointc1) 

 

# performance measure(ROC) on test data 

predicted8<-predict(model_com, newdata=testdata, type="response") 

 

p8<-predict(model_com,newdata=testdata, type="response") 

pr8 <- prediction(p8, testdata$stunting) 

prf8 <- performance(pr8, measure = "tpr", x.measure = "fpr") 

 

#Cut off points at 0.5 

confusionMatrix(testdata$stunting,predicted8) 
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misClassError(testdata$stunting,predicted8) 

sensitivity(testdata$stunting,predicted8) 

specificity(testdata$stunting,predicted8) 

 

#Cut off points at 0.37 

confusionMatrix(testdata$stunting,predicted8,threshold=0.37) 

misClassError(testdata$stunting,predicted8,threshold=0.37) 

sensitivity(testdata$stunting,predicted8,threshold=0.37) 

specificity(testdata$stunting,predicted8,threshold=0.37) 

 

auc8 <- performance(pr8, measure = "auc",threshold=0.37) 

auc8 <- auc8@y.values[[1]] 

auc8 

ci.auc(testdata$stunting, p8,threshold=0.37) 

 

 

V = caret::varImp(model_backward) 

B = caret::varImp(model_forward) 

S = caret::varImp(model_stepwise) 

L = caret::varImp(LASSO_sel) 

F = caret::varImp(rf_sel) 

Q = caret::varImp(model_judge) 

C = caret::varImp(model_com) 

 

bacwd<-ggplot2::ggplot(V, aes(x=reorder(rownames(V),Overall), y=Overall)) + 

  geom_point( color="blue", size=2, alpha=0.6)+ 

  geom_segment( aes(x=rownames(V), xend=rownames(V), y=0, yend=Overall),  

                color='skyblue') + 

  xlab('Variable')+ 

  ylab('importance')+ 

  theme_light() + 

  coord_flip()  

 

 

forwd<-ggplot2::ggplot(B, aes(x=reorder(rownames(B),Overall), y=Overall)) + 

  geom_point( color="blue", size=2, alpha=0.6)+ 

  geom_segment( aes(x=rownames(B), xend=rownames(B), y=0, yend=Overall),  

                color='skyblue') + 

  xlab('Variable')+ 

  ylab('importance')+ 

  theme_light() + 

  coord_flip() 

 

 

step<-ggplot2::ggplot(S, aes(x=reorder(rownames(S),Overall), y=Overall)) + 

  geom_point( color="blue", size=2, alpha=0.6)+ 

  geom_segment( aes(x=rownames(S), xend=rownames(S), y=0, yend=Overall),  
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                color='skyblue') + 

  xlab('Variable')+ 

  ylab('importance')+ 

  theme_light() + 

  coord_flip()  

 

rf<-ggplot2::ggplot(F, aes(x=reorder(rownames(F),Overall), y=Overall)) + 

  geom_point( color="blue", size=2, alpha=0.6)+ 

  geom_segment( aes(x=rownames(F), xend=rownames(F), y=0, yend=Overall),  

                color='skyblue') + 

  xlab('Variable')+ 

  ylab('importance')+ 

  theme_light() + 

  coord_flip()  

 

laso<-ggplot2::ggplot(L, aes(x=reorder(rownames(L),Overall), y=Overall)) + 

  geom_point( color="blue", size=2, alpha=0.6)+ 

  geom_segment( aes(x=rownames(L), xend=rownames(L), y=0, yend=Overall),  

                color='skyblue') + 

  xlab('Variable')+ 

  ylab('importance')+ 

  theme_light() + 

  coord_flip() 

 

 

judge<-ggplot2::ggplot(Q, aes(x=reorder(rownames(Q),Overall), y=Overall)) + 

  geom_point( color="blue", size=2, alpha=0.6)+ 

  geom_segment( aes(x=rownames(Q), xend=rownames(Q), y=0, yend=Overall),  

                color='skyblue') + 

  xlab('Variable')+ 

  ylab('importance')+ 

  theme_light() + 

  coord_flip() 

 

com_var<-ggplot2::ggplot(C, aes(x=reorder(rownames(C),Overall), y=Overall)) + 

  geom_point( color="blue", size=2, alpha=0.6)+ 

  geom_segment( aes(x=rownames(C), xend=rownames(C), y=0, yend=Overall),  

                color='skyblue') + 

  xlab('Variable')+ 

  ylab('importance')+ 

  theme_light() + 

  coord_flip() 

 

ggarrange(bacwd,forwd,step +rremove("x.text"), 

          labels=c("A","B","C"), 

          ncol=3,nrow=1) 
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ggarrange(laso,rf, judge,com_var +rremove("x.text"), 

          labels=c("D","E","F"), 

          ncol=3,nrow=1) 

 

 

#COMPARING ROC PLOT of 7 Models 

 

plot(prfb,col="red",lwd=2) 

plot(prfo1,add=TRUE,col="green",lwd=2) 

plot(psf2,add=TRUE,col="blue",lwd=2) 

plot(prf23,add=TRUE,col="black",lwd=2) 

plot(prf24,add=TRUE,col="yellow",lwd=2) 

plot(prf6,add=TRUE,col="pink",lwd=2) 

plot(prf8,add=TRUE,col="orange",lwd=2) 

title(main="Comparison of ROC Curves", font.main=4) 

plot_range<-range(0,0.5,0.5,0.5,0.5) 

legend(0.5, plot_range[2],c("backward","forward","stepwise","random 

forest","LASSO","judgement","common_var"), cex=0.2,  

       col=c("red","green","blue","black","yellow","pink","orange"), pch=21:22, lty=1:2) 

abline(a=0,b=1,lwd=2,lty=2,col="gray") 

 

 

 

 

 


